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Getting Started

Product Overview (p. 1-2) Describes Fixed-Point Toolbox™
software and its major features

Licensing (p. 1-4) Describes the Fixed-Point Toolbox
licensing model

Getting Help (p. 1-5) Tells you how to get help on
Fixed-Point Toolbox objects,
properties, and functions

Display Settings (p. 1-7) Describes the fi object display
settings used in the code examples
in this User’s Guide

Demos (p. 1-9) Lists the Fixed-Point Toolbox demos



1 Getting Started

Product Overview
Fixed-Point Toolbox™ software provides fixed-point data types in MATLAB®

technical computing software and enables algorithm development by
providing fixed-point arithmetic. The toolbox enables you to create the
following types of objects:

• fi — Defines a fixed-point numeric object in the MATLAB workspace. Each
fi object is composed of value data, a fimath object, and a numerictype
object.

• fimath — Governs how overloaded arithmetic operators work with fi
objects

• fipref — Defines the display, logging, and data type override preferences
of fi objects

• numerictype — Defines the data type and scaling attributes of fi objects

• quantizer — Quantizes data sets

Fixed-Point Toolbox™ software provides you with

• The ability to define fixed-point data types, scaling, and rounding and
overflow methods in the MATLAB workspace

• Bit-true real and complex simulation

• Basic fixed-point arithmetic

- Arithmetic operators +, -, *, .* for binary point-only and real [Slope
Bias] signals

- Division using the divide function for binary point-only signals

• Arbitrary word length up to intmax('uint16') bits

• Logging of minimums, maximums, overflows, and underflows

• Data type override with singles, doubles, or scaled doubles

• Conversions between binary, hex, double, and built-in integers

• Relational, logical, and bitwise operators

• Matrix functions such as ctranspose and horzcat
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Product Overview

• Statistics functions such as max and min

• Interoperability with Simulink®, Signal Processing Blockset™ software,
Embedded MATLAB™ subset, and Filter Design Toolbox™ software

• Compatibility with the Simulink To Workspace and From Workspace blocks
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1 Getting Started

Licensing
You can use fi objects with the DataType property set to double without a
Fixed-Point Toolbox™ license when the fipref LoggingMode property is set
to off. A Fixed-Point Toolbox™ license is checked out when you

• Use any fi object with any DataType other than double.

• Create any fi object when the fipref LoggingMode property is set to on,
including fi objects with DataType double.

• Load a MAT-file that contains any fi object with the DataType property
set to single, boolean, ScaledDouble, or Fixed.

You can prevent the checkout of a Fixed-Point Toolbox™ license when working
with Fixed-Point Toolbox™ code by setting the fipref DataTypeOverride
property to TrueDoubles.
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Getting Help

Getting Help

In this section...

“Getting Help in This Document” on page 1-5

“Getting Help at the MATLAB® Command Line” on page 1-5

Getting Help in This Document
The objects of Fixed-Point Toolbox™ software are discussed in the following
chapters:

• Chapter 3, “Working with fi Objects”

• Chapter 4, “Working with fimath Objects”

• Chapter 5, “Working with fipref Objects”

• Chapter 6, “Working with numerictype Objects”

• Chapter 7, “Working with quantizer Objects”

To get in-depth information about the properties of these objects, refer to
the Property Reference.

To get in-depth information about the functions of these objects, refer to the
Function Reference.

Getting Help at the MATLAB® Command Line
To get command-line help for Fixed-Point Toolbox objects, type

help objectname

For example,

help fi
help fimath
help fipref
help numerictype
help quantizer
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1 Getting Started

To get command-line help for Fixed-Point Toolbox functions, type

help embedded.fi/functionname

For example,

help embedded.fi/abs
help embedded.fi/bitset
help embedded.fi/sqrt

To invoke Help Browser documentation for Fixed-Point Toolbox functions
from the MATLAB® command line, type

doc fixedpoint/functionname

For example,

doc fixedpoint/int
doc fixedpoint/add
doc fixedpoint/savefipref
doc fixedpoint/quantize
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Display Settings

Display Settings
In Fixed-Point Toolbox™ software, the display of fi objects is determined by
the fipref object. Throughout this User’s Guide, code examples of fi objects
are usually shown as they appear when the fipref properties are set as
follows:

• NumberDisplay — 'RealWorldValue'

• NumericTypeDisplay — 'full'

• FimathDisplay — 'none'

For example,

p = fipref('NumberDisplay', 'RealWorldValue',...
'NumericTypeDisplay', 'full', 'FimathDisplay', 'none')

p =

NumberDisplay: 'RealWorldValue'
NumericTypeDisplay: 'full'

FimathDisplay: 'none'
LoggingMode: 'Off'

DataTypeOverride: 'ForceOff'

a = fi(pi)

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13
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1 Getting Started

In other cases, it makes sense to also show the fimath object display:

• NumberDisplay — 'RealWorldValue'

• NumericTypeDisplay — 'full'

• FimathDisplay — 'full'

For example,

p = fipref('NumberDisplay', 'RealWorldValue',...
'NumericTypeDisplay', 'full', 'FimathDisplay', 'full')

p =

NumberDisplay: 'RealWorldValue'
NumericTypeDisplay: 'full'

FimathDisplay: 'full'
LoggingMode: 'Off'

DataTypeOverride: 'ForceOff'

a = fi(pi)

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

For more information, refer to Chapter 5, “Working with fipref Objects”.
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Demos
You can access demos in the Demos tab of the Help Navigator window.
Fixed-Point Toolbox™ software includes the following demos:

• Fixed-Point Basics — Demonstrates the basic use of the fixed-point fi
object

• Number Circle — Illustrates the definitions of unsigned and signed two’s
complement integer and fixed-point numbers

• Binary Point Scaling — Explains binary point-only scaling

• Fixed-Point Data Type Override, Min/Max Logging, and Scaling — Steps
through the workflow of using doubles override and min/max logging in the
toolbox to choose appropriate scaling for a fixed-point algorithm

• Fixed-Point C Development — Shows how to use the parameters from a
fixed-point MATLAB® program in a fixed-point C program

• Fixed-Point Algorithm Development — Presents the development and
verification of a simple fixed-point algorithm

• Fixed-Point Fast Fourier Transform (FFT) — Provides an example of
converting a textbook Fast Fourier Transform algorithm into fixed-point
MATLAB code and then into fixed-point C code

• Analysis of a Fixed-Point State-Space System with Limit Cycles —
Demonstrates a limit cycle detection routine applied to a state-space system

• Quantization Error — Demonstrates the statistics of the error when signals
are quantized using various rounding methods

• Fixed-Point Lowpass Filtering Using Embedded MATLAB™ MEX — Steps
through generating a C-MEX function from M code, running the generated
C-MEX function, and displaying the results
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2

Fixed-Point Concepts

Fixed-Point Data Types (p. 2-2) Defines fixed-point data types

Scaling (p. 2-4) Discusses the types of scaling used
in Fixed-Point Toolbox; binary
point-only and [Slope Bias]

Precision and Range (p. 2-5) Discusses the concepts behind
arithmetic operations in Fixed-Point
Toolbox

Arithmetic Operations (p. 2-8) Introduces the concepts behind
arithmetic operations in Fixed-Point
Toolbox

fi Objects Compared to C Integer
Data Types (p. 2-20)

Compares ANSI C integer data type
ranges, conversions, and exception
handling with those of fi objects



2 Fixed-Point Concepts

Fixed-Point Data Types
In digital hardware, numbers are stored in binary words. A binary word is
a fixed-length sequence of bits (1’s and 0’s). How hardware components or
software functions interpret this sequence of 1’s and 0’s is defined by the
data type.

Binary numbers are represented as either fixed-point or floating-point data
types. This chapter discusses many terms and concepts relating to fixed-point
numbers, data types, and mathematics.

A fixed-point data type is characterized by the word length in bits, the position
of the binary point, and whether it is signed or unsigned. The position of
the binary point is the means by which fixed-point values are scaled and
interpreted.

For example, a binary representation of a generalized fixed-point number
(either signed or unsigned) is shown below:

��� � ��� � �� ���� �� �� ��

where

• bi is the ith binary digit.

• wl is the word length in bits.

• bwl-1 is the location of the most significant, or highest, bit (MSB).

• b0 is the location of the least significant, or lowest, bit (LSB).

• The binary point is shown four places to the left of the LSB. In this
example, therefore, the number is said to have four fractional bits, or a
fraction length of four.

Fixed-point data types can be either signed or unsigned. Signed binary
fixed-point numbers are typically represented in one of three ways:

2-2



Fixed-Point Data Types

• Sign/magnitude

• One’s complement

• Two’s complement

Two’s complement is the most common representation of signed fixed-point
numbers and is the only representation used by Fixed-Point Toolbox™
documentation. Refer to “Two’s Complement” on page 2-9 for more
information.
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2 Fixed-Point Concepts

Scaling
Fixed-point numbers can be encoded according to the scheme

real world value slope integer bias- = × +( )

where the slope can be expressed as

slope fractional slope fixed exponent= × 2

The integer is sometimes called the stored integer. This is the raw binary
number, in which the binary point assumed to be at the far right of the word.
In Fixed-Point Toolbox™ documentation, the negative of the fixed exponent is
often referred to as the fraction length.

The slope and bias together represent the scaling of the fixed-point number.
In a number with zero bias, only the slope affects the scaling. A fixed-point
number that is only scaled by binary point position is equivalent to a
number in [Slope Bias] representation that has a bias equal to zero and a
fractional slope equal to one. This is referred to as binary point-only scaling or
power-of-two scaling:

real world value integerfixed exponent- = ×2

or

real world value integerfraction length- = ×−2

Fixed-Point Toolbox software supports both binary point-only scaling and
[Slope Bias] scaling.

Note For examples of binary point-only scaling, see the Fixed-Point Toolbox
demo “fi Binary Point Scaling.”
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Precision and Range

In this section...

“Range” on page 2-5

“Precision” on page 2-6

Note You must pay attention to the precision and range of the fixed-point
data types and scalings you choose in order to know whether rounding
methods will be invoked or if overflows or underflows will occur.

Range
The range is the span of numbers that a fixed-point data type and scaling
can represent. The range of representable numbers for a two’s complement
fixed-point number of word length wl , scaling S and bias B is illustrated
below:

�
��

��������	�
���
� ��������	�
���
�

� ���� � �� � � ���� � �� ��

For both signed and unsigned fixed-point numbers of any data type, the
number of different bit patterns is 2wl.

For example, in two’s complement, negative numbers must be represented
as well as zero, so the maximum value is 2wl -1 – 1. Because there is only one
representation for zero, there are an unequal number of positive and negative

numbers. This means there is a representation for − −2 1wl but not for 2 1wl− :

�

��������	�
���
� ��������	�
���
�

��
	�����	�	�	���	����	�	��

� ��� � ����
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2 Fixed-Point Concepts

Overflow Handling
Because a fixed-point data type represents numbers within a finite range,
overflows and underflows can occur if the result of an operation is larger or
smaller than the numbers in that range.

Fixed-Point Toolbox™ software allows you to either saturate or wrap
overflows. Saturation represents positive overflows as the largest positive
number in the range being used, and negative overflows as the largest
negative number in the range being used. Wrapping uses modulo arithmetic
to cast an overflow back into the representable range of the data type. Refer
to “Modulo Arithmetic” on page 2-8 for more information.

When you create a fi object, any overflows are saturated. The OverflowMode
property of the default fimath object is saturate. You can log overflows and
underflows by setting the LoggingMode property of the fipref object to on.
Refer to “LoggingMode” for more information.

Precision
The precision of a fixed-point number is the difference between successive
values representable by its data type and scaling, which is equal to the value
of its least significant bit. The value of the least significant bit, and therefore
the precision of the number, is determined by the number of fractional bits.
A fixed-point value can be represented to within half of the precision of its
data type and scaling.

For example, a fixed-point representation with four bits to the right of the
binary point has a precision of 2-4 or 0.0625, which is the value of its least
significant bit. Any number within the range of this data type and scaling can
be represented to within (2-4)/2 or 0.03125, which is half the precision. This is
an example of representing a number with finite precision.

Rounding Methods
One of the limitations of representing numbers with finite precision is that
not every number in the available range can be represented exactly. When
the result of a fixed-point calculation is a number that cannot be represented
exactly by the data type and scaling being used, precision is lost. A rounding
method must be used to cast the result to a representable number. Fixed-Point
Toolbox software currently supports the following rounding methods:
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• ceil rounds to the closest representable number in the direction of positive
infinity.

• convergent rounds to the closest representable integer. In the case of a
tie, it rounds to the nearest even stored integer. This is the least biased
rounding method provided by the toolbox.

• fix rounds to the closest representable integer in the direction of zero.

• floor, which is equivalent to two’s complement truncation, rounds to the
closest representable number in the direction of negative infinity.

• nearest rounds to the closest representable integer. In the case of a tie,
it rounds to the closest representable integer in the direction of positive
infinity. This is the default rounding method for fi object creation and fi
arithmetic.

• round rounds to the closest representable integer. In the case of a tie,
it rounds positive numbers to the closest representable integer in the
direction of positive infinity, and it rounds negative numbers to the closest
representable integer in the direction of negative infinity.
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Arithmetic Operations

In this section...

“Modulo Arithmetic” on page 2-8

“Two’s Complement” on page 2-9

“Addition and Subtraction” on page 2-10

“Multiplication” on page 2-11

“Casts” on page 2-16

Note These sections will help you understand what data type and scaling
choices result in overflows or a loss of precision.

Modulo Arithmetic
Binary math is based on modulo arithmetic. Modulo arithmetic uses only
a finite set of numbers, wrapping the results of any calculations that fall
outside the given set back into the set.

For example, the common everyday clock uses modulo 12 arithmetic. Numbers
in this system can only be 1 through 12. Therefore, in the “clock” system, 9
plus 9 equals 6. This can be more easily visualized as a number circle:
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Similarly, binary math can only use the numbers 0 and 1, and any arithmetic
results that fall outside this range are wrapped “around the circle” to either 0
or 1.

Two’s Complement
Two’s complement is a way to interpret a binary number. In two’s complement,
positive numbers always start with a 0 and negative numbers always start
with a 1. If the leading bit of a two’s complement number is 0, the value
is obtained by calculating the standard binary value of the number. If the
leading bit of a two’s complement number is 1, the value is obtained by
assuming that the leftmost bit is negative, and then calculating the binary
value of the number. For example,

01 0 2 1

11 2 2 2 1 1

0

1 0

= + =

= −( ) + ( )( ) = − + = −

( )

( )

To compute the negative of a binary number using two’s complement,

1 Take the one’s complement, or “flip the bits.”
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2 Add a 1 using binary math.

3 Discard any bits carried beyond the original word length.

For example, consider taking the negative of 11010 (-6). First, take the one’s
complement of the number, or flip the bits:

11010 00101→

Next, add a 1, wrapping all numbers to 0 or 1:

00101
1

00110 6
+

( )

Addition and Subtraction
The addition of fixed-point numbers requires that the binary points of the
addends be aligned. The addition is then performed using binary arithmetic
so that no number other than 0 or 1 is used.

For example, consider the addition of 010010.1 (18.5) with 0110.110 (6.75):

010010 1
0110 110

011001 010

18 5
6 75
25 25

.

.

.

( . )
( . )
( . )

+

Fixed-point subtraction is equivalent to adding while using the two’s
complement value for any negative values. In subtraction, the addends
must be sign-extended to match each other’s length. For example, consider
subtracting 0110.110 (6.75) from 010010.1 (18.5):

010010 100
0110 110

18 5
6 75

.

.
( . )
( . )−

010010 100
1001 010

1001011 110

18 5
6 75

11 75

.

.

.

( . )
( . )
( . )

+
/

−11

"�

#	���
��	���$�
���

�%�&�	$���������
���	����	�'�������
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The default fimath object has a value of 1 (true) for the CastBeforeSum
property. This casts addends to the sum data type before addition. Therefore,
no further shifting is necessary during the addition to line up the binary
points.

If CastBeforeSum has a value of 0 (false), the addends are added with full
precision maintained. After the addition the sum is then quantized.

Multiplication
The multiplication of two’s complement fixed-point numbers is directly
analogous to regular decimal multiplication, with the exception that the
intermediate results must be sign-extended so that their left sides align
before you add them together.

For example, consider the multiplication of 10.11 (-1.25) with 011 (3):

Multiplication Data Types
The following diagrams show the data types used for fixed-point multiplication
using Fixed-Point Toolbox™ software. The diagrams illustrate the differences
between the data types used for real-real, complex-real, and complex-complex
multiplication.
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Real-Real Multiplication. The following diagram shows the data types
used by the toolbox in the multiplication of two real numbers . The output
of this multiplication is in the product data type, which is governed by the
fimath ProductMode property:

(��
�
����	�#�� )
��
$�	�
��
�

����	�#��

�

$

�$

Real-Complex Multiplication. The following diagram shows the data types
used by the toolbox in the multiplication of a real and a complex fixed-point
number. Real-complex and complex-real multiplication are equivalent. The
output of this multiplication is in the product data type, which is governed by
the fimath ProductMode property:

(��
�
����	�#��

(��
�
����	�#�� $

�

�
�$

��

)
��
$�	�
��
�
����	�#��

�$*���

$

�
�

Complex-Complex Multiplication. The following diagram shows the
multiplication of two complex fixed-point numbers. Note that the output of
the multiplication is in the sum data type, which is governed by the fimath
SumMode property. The product data type is determined by the fimath
ProductMode property:
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Multiplication with fimath
In the following examples, let

• F = fimath('ProductMode','FullPrecision',...

'SumMode','FullPrecision')

• T1 = numerictype('WordLength',24,'FractionLength',20)

• T2 = numerictype('WordLength',16,'FractionLength',10)

Real*Real. Notice that the word length and fraction length of the result z
are equal to the sum of the word lengths and fraction lengths, respectively,
of the multiplicands. This is because the fimath SumMode and ProductMode
properties are set to FullPrecision:

P = fipref;
P.FimathDisplay = 'none';
x = fi(5, T1, F)

x =

5
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DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 24
FractionLength: 20

y = fi(10, T2, F)

y =

10

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 10

z = x*y

z =

50

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 40
FractionLength: 30

Real*Complex. Notice that the word length and fraction length of the result
z are equal to the sum of the word lengths and fraction lengths, respectively,
of the multiplicands. This is because the fimath SumMode and ProductMode
properties are set to FullPrecision:

x = fi(5,T1,F)

x =

5
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DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 24
FractionLength: 20

y = fi(10+2i,T2,F)

y =

10.0000 + 2.0000i

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 10

z = x*y

z =

50.0000 +10.0000i

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 40
FractionLength: 30

Complex*Complex. Complex-complex multiplication involves an addition
as well as multiplication, so the word length of the full-precision result has
one more bit than the sum of the word lengths of the multiplicands:

x = fi(5+6i,T1,F)

x =

5.0000 + 6.0000i
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DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 24
FractionLength: 20

y = fi(10+2i,T2,F)

y =

10.0000 + 2.0000i

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 10

z = x*y

z =

38.0000 +70.0000i

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 41
FractionLength: 30

Casts
The fimath object allows you to specify the data type and scaling of
intermediate sums and products with the SumMode and ProductMode
properties. It is important to keep in mind the ramifications of each cast when
you set the SumMode and ProductMode properties. Depending upon the data
types you select, overflow and/or rounding might occur. The following two
examples demonstrate cases where overflow and rounding can occur.
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Note For more examples of casting, see “Casting fi Objects” on page 3-14.

Casting from a Shorter Data Type to a Longer Data Type
Consider the cast of a nonzero number, represented by a 4-bit data type with
two fractional bits, to an 8-bit data type with seven fractional bits:
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As the diagram shows, the source bits are shifted up so that the binary point
matches the destination binary point position. The highest source bit does
not fit, so overflow might occur and the result can saturate or wrap. The
empty bits at the low end of the destination data type are padded with either
0’s or 1’s:

• If overflow does not occur, the empty bits are padded with 0’s.

• If wrapping occurs, the empty bits are padded with 0’s.

• If saturation occurs,

- The empty bits of a positive number are padded with 1’s.

- The empty bits of a negative number are padded with 0’s.
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You can see that even with a cast from a shorter data type to a longer data
type, overflow can still occur. This can happen when the integer length of
the source data type (in this case two) is longer than the integer length of
the destination data type (in this case one). Similarly, rounding might be
necessary even when casting from a shorter data type to a longer data type, if
the destination data type and scaling has fewer fractional bits than the source.

Casting from a Longer Data Type to a Shorter Data Type
Consider the cast of a nonzero number, represented by an 8-bit data type with
seven fractional bits, to a 4-bit data type with two fractional bits:
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As the diagram shows, the source bits are shifted down so that the binary
point matches the destination binary point position. There is no value for the
highest bit from the source, so the result is sign-extended to fill the integer
portion of the destination data type. The bottom five bits of the source do not
fit into the fraction length of the destination. Therefore, precision can be
lost as the result is rounded.

In this case, even though the cast is from a longer data type to a shorter data
type, all the integer bits are maintained. Conversely, full precision can be
maintained even if you cast to a shorter data type, as long as the fraction
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length of the destination data type is the same length or longer than the
fraction length of the source data type. In that case, however, bits are lost
from the high end of the result and overflow can occur.

The worst case occurs when both the integer length and the fraction length of
the destination data type are shorter than those of the source data type and
scaling. In that case, both overflow and a loss of precision can occur.
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fi Objects Compared to C Integer Data Types

In this section...

“Integer Data Types” on page 2-20

“Unary Conversions” on page 2-22

“Binary Conversions” on page 2-23

“Overflow Handling” on page 2-25

Note The sections in this topic compare the fi object with fixed-point data
types and operations in C. In these sections, the information on ANSI C
is adapted from Samuel P. Harbison and Guy L. Steele Jr., C: A Reference
Manual, 3rd ed., Prentice Hall, 1991.

Integer Data Types
This section compares the numerical range of fi integer data types to the
minimum numerical ranges of ANSI C integer data types.

ANSI C Integer Data Types
The following table shows the minimum ranges of ANSI C integer data types.
The integer ranges can be larger than or equal to those shown, but cannot be
smaller. The range of a long must be larger than or equal to the range of an
int, which must be larger than or equal to the range of a short.

Note that the minimum ANSI C ranges are large enough to accommodate
one’s complement or sign/magnitude representation, but not two’s complement
representation. In the one’s complement and sign/magnitude representations,

a signed integer with n bits has a range from − +−2 11n
to 2 11n− − , inclusive.

In both of these representations, an equal number of positive and negative
numbers are represented, and zero is represented twice.

Integer Type Minimum Maximum

signed char –127 127
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Integer Type Minimum Maximum

unsigned char 0 255

short int –32,767 32,767

unsigned short 0 65,535

int –32,767 32,767

unsigned int 0 65,535

long int –2,147,483,647 2,147,483,647

unsigned long 0 4,294,967,295

fi Integer Data Types
The following table lists the numerical ranges of the integer data types
of the fi object, in particular those equivalent to the C integer data
types. The ranges are large enough to accommodate the two’s complement
representation, which is the only signed binary encoding technique supported
by Fixed-Point Toolbox™ software. In the two’s complement representation, a

signed integer with n bits has a range from − −2 1n to 2 11n− − , inclusive. An

unsigned integer with n bits has a range from 0 to 2 1n − , inclusive. The
negative side of the range has one more value than the positive side, and
zero is represented uniquely.

Constructor Signed Word
Length

Fraction
Length Minimum Maximum Closest ANSI

C Equivalent

fi(x,1,n,0) Yes
n
(2 to
65,535)

0 − −2 1n 2 11n− − N/A

fi(x,0,n,0) No
n
(2 to
65,535)

0 0 2 1n − N/A

fi(x,1,8,0) Yes 8 0 –128 127 signed char

fi(x,0,8,0) No 8 0 0 255 unsigned char

fi(x,1,16,0) Yes 16 0 –32,768 32,767 short int
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Constructor Signed Word
Length

Fraction
Length Minimum Maximum Closest ANSI

C Equivalent

fi(x,0,16,0) No 16 0 0 65,535
unsigned
short

fi(x,1,32,0) Yes 32 0 –2,147,483,648 2,147,483,647 long int

fi(x,0,32,0) No 32 0 0 4,294,967,295 unsigned long

Unary Conversions
Unary conversions dictate whether and how a single operand is converted
before an operation is performed. This section discusses unary conversions
in ANSI C and of fi objects.

ANSI C Usual Unary Conversions
Unary conversions in ANSI C are automatically applied to the operands of
the unary !, –, ~, and * operators, and of the binary << and >> operators,
according to the following table:

Original Operand Type ANSI C Conversion

char or short int

unsigned char or unsigned short int or unsigned int1

float float

Array of T Pointer to T

Function returning T Pointer to function returning T

1If type int cannot represent all the values of the original data type without
overflow, the converted type is unsigned int.
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fi Usual Unary Conversions
The following table shows the fi unary conversions:

C Operator fi Equivalent fi Conversion

!x ~x = not(x) Result is logical.

~x bitcmp(x) Result is same numeric type as operand.

*x No equivalent N/A

x<<n bitshift(x,n)
positive n

Result is same numeric type as operand. Overflow
mode is obeyed: wrap or saturate if 1-valued bits are
shifted off the left, or into the sign bit if the operand is
signed. 0-valued bits are shifted in on the right.

x>>n bitshift(x,-n) Result is same numeric type as operand. Round mode
is obeyed if 1-valued bits are shifted off the right.
0-valued bits are shifted in on the left if the operand is
either signed and positive or unsigned. 1-valued bits
are shifted in on the left if the operand is signed and
negative.

+x +x Result is same numeric type as operand.

-x -x Result is same numeric type as operand. Overflow
mode is obeyed. For example, overflow might occur
when you negate an unsigned fi or the most negative
value of a signed fi.

Binary Conversions
This section describes the conversions that occur when the operands of a
binary operator are different data types.

ANSI C Usual Binary Conversions
In ANSI C, operands of a binary operator must be of the same type. If they
are different, one is converted to the type of the other according to the first
applicable conversion in the following table:
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Type of One Operand
Type of Other
Operand ANSI C Conversion

long double Any long double

double Any double

float Any float

unsigned long Any unsigned long

long unsigned long or unsigned
long1

long int long

unsigned int or unsigned unsigned

int int int

1Type long is only used if it can represent all values of type unsigned.

fi Usual Binary Conversions
When one of the operands of a binary operator (+, –, *, .*) is a fi object and
the other is a MATLAB built-in numeric type, then the non-fi operand is
converted to a fi object before the operation is performed, according to the
following table:

Type of One
Operand

Type of Other
Operand

Properties of Other Operand After Conversion to a fi
Object

fi double or
single • Signed = same as the original fi operand

• WordLength = same as the original fi operand

• FractionLength = set to best precision possible

fi int8
• Signed = 1

• WordLength = 8

• FractionLength = 0
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Type of One
Operand

Type of Other
Operand

Properties of Other Operand After Conversion to a fi
Object

fi uint8
• Signed = 0

• WordLength = 8

• FractionLength = 0

fi int16
• Signed = 1

• WordLength = 16

• FractionLength = 0

fi uint16
• Signed = 0

• WordLength = 16

• FractionLength = 0

fi int32
• Signed = 1

• WordLength = 32

• FractionLength = 0

fi uint32
• Signed = 0

• WordLength = 32

• FractionLength = 0

Overflow Handling
The following sections compare how ANSI C and Fixed-Point Toolbox software
handle overflows.
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ANSI C Overflow Handling
In ANSI C, the result of signed integer operations is whatever value is
produced by the machine instruction used to implement the operation.
Therefore, ANSI C has no rules for handling signed integer overflow.

The results of unsigned integer overflows wrap in ANSI C.

fi Overflow Handling
Addition and multiplication with fi objects yield results that can be exactly
represented by a fi object, up to word lengths of 65,535 bits or the available
memory on your machine. This is not true of division, however, because many
ratios result in infinite binary expressions. You can perform division with fi
objects using the divide function, which requires you to explicitly specify the
numeric type of the result.

The conditions under which a fi object overflows and the results then
produced are determined by the associated fimath object. You can specify
certain overflow characteristics separately for sums (including differences)
and products. Refer to the following table:

fimath Object Properties
Related to Overflow
Handling Property Value Description

'saturate' Overflows are saturated to the maximum
or minimum value in the range.

OverflowMode

'wrap' Overflows wrap using modulo arithmetic if
unsigned, two’s complement wrap if signed.

ProductMode 'FullPrecision' Full-precision results are kept. Overflow
does not occur. An error is thrown if the
resulting word length is greater than
MaxProductWordLength.

The rules for computing the resulting
product word and fraction lengths are
given in “ProductMode” in the Property
Reference.
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fimath Object Properties
Related to Overflow
Handling Property Value Description

'KeepLSB' The least significant bits of the product are
kept. Full precision is kept, but overflow
is possible. This behavior models the C
language integer operations.

The resulting word length is determined
by the ProductWordLength property. If
ProductWordLength is greater than is
necessary for the full-precision product,
then the result is stored in the least
significant bits. If ProductWordLength is
less than is necessary for the full-precision
product, then overflow occurs.

The rule for computing the resulting
product fraction length is given in
“ProductMode” in the Property Reference.

'KeepMSB' The most significant bits of the product are
kept. Overflow is prevented, but precision
may be lost.

The resulting word length is determined
by the ProductWordLength property. If
ProductWordLength is greater than is
necessary for the full-precision product,
then the result is stored in the most
significant bits. If ProductWordLength is
less than is necessary for the full-precision
product, then rounding occurs.

The rule for computing the resulting
product fraction length is given in
“ProductMode” in the Property Reference.

'SpecifyPrecision' You can specify both the word length and
the fraction length of the resulting product.
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fimath Object Properties
Related to Overflow
Handling Property Value Description

ProductWordLength Positive integer The word length of product results when
ProductMode is 'KeepLSB', 'KeepMSB', or
'SpecifyPrecision'.

MaxProductWordLength Positive integer The maximum product word length allowed
when ProductMode is 'FullPrecision'.
The default is 128 bits. The maximum is
65,535 bits. This property can help ensure
that your simulation does not exceed your
hardware requirements.

ProductFractionLength Integer The fraction length of product results when
ProductMode is 'Specify Precision'.

SumMode 'FullPrecision' Full-precision results are kept. Overflow
does not occur. An error is thrown if the
resulting word length is greater than
MaxSumWordLength.

The rules for computing the resulting sum
word and fraction lengths are given in
“SumMode” in the Property Reference.
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fimath Object Properties
Related to Overflow
Handling Property Value Description

'KeepLSB' The least significant bits of the sum are
kept. Full precision is kept, but overflow
is possible. This behavior models the C
language integer operations.

The resulting word length is determined
by the SumWordLength property. If
SumWordLength is greater than is necessary
for the full-precision sum, then the result
is stored in the least significant bits. If
SumWordLength is less than is necessary
for the full-precision sum, then overflow
occurs.

The rule for computing the resulting sum
fraction length is given in “SumMode” in
the Property Reference.

'KeepMSB' The most significant bits of the sum are
kept. Overflow is prevented, but precision
may be lost.

The resulting word length is determined
by the SumWordLength property. If
SumWordLength is greater than is necessary
for the full-precision sum, then the result
is stored in the most significant bits. If
SumWordLength is less than is necessary
for the full-precision sum, then rounding
occurs.

The rule for computing the resulting sum
fraction length is given in “SumMode” in
the Property Reference.

'SpecifyPrecision' You can specify both the word length and
the fraction length of the resulting sum.
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fimath Object Properties
Related to Overflow
Handling Property Value Description

SumWordLength Positive integer The word length of sum results when
SumMode is 'KeepLSB', 'KeepMSB', or
'SpecifyPrecision'.

MaxSumWordLength Positive integer The maximum sum word length allowed
when SumMode is 'FullPrecision'. The
default is 128 bits. The maximum is 65,535
bits. This property can help ensure that
your simulation does not exceed your
hardware requirements.

SumFractionLength Integer The fraction length of sum results when
SumMode is 'SpecifyPrecision'.
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3

Working with fi Objects

Constructing fi Objects (p. 3-2) Teaches you how to create fi objects

Casting fi Objects (p. 3-14) Shows you how to cast fi objects

fi Object Properties (p. 3-18) Tells you how to find more
information about the properties
associated with fi objects, and shows
you how to set these properties

fi Object Functions (p. 3-23) Introduces the functions in the
toolbox that operate directly on fi
objects



3 Working with fi Objects

Constructing fi Objects

In this section...

“fi Object Syntaxes” on page 3-2

“Examples of Constructing fi Objects” on page 3-4

fi Object Syntaxes
You can create fi objects using Fixed-Point Toolbox™ software in one of two
ways:

• You can use the fi constructor function to create a new object.

• You can use the fi constructor function to copy an existing fi object.

To get started, type

a = fi(0)

to create a fi object with the default data type and a value of 0.

a =

0

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 15

A signed fi object is created with a value of 0, word length of 16 bits, and
fraction length of 15 bits.

Note For information on the display format of fi objects, refer to “Display
Settings” on page 1-7.
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You can use the fi constructor function in the following ways:

• a = fi is the default constructor and returns a fi object with no value,
16-bit word length, and 15-bit fraction length.

• a = fi(v) returns a signed fixed-point object with value v, 16-bit word
length, and best-precision fraction length.

• a = fi(v,s) returns a fixed-point object with value v, signedness s,
16-bit word length, and best-precision fraction length. s can be 0 (false)
for unsigned or 1 (true) for signed.

• a = fi(v,s,w) returns a fixed-point object with value v, signedness s,
word length w, and best-precision fraction length.

• a = fi(v,s,w,f) returns a fixed-point object with value v, signedness s,
word length w, and fraction length f.

• a = fi(v,s,w,slope,bias) returns a fixed-point object with value v,
signedness s, word length w, slope, and bias.

• a = fi(v,s,w,slopeadjustmentfactor,fixedexponent,bias)
returns a fixed-point object with value v, signedness s, word length w,
slopeadjustmentfactor, fixedexponent, and bias.

• a = fi(v,T) returns a fixed-point object with value v and
embedded.numerictype T. Refer to Chapter 6, “Working with numerictype
Objects” for more information on numerictype objects.

• a = fi(v,F) returns a fixed-point object with value v, embedded.fimath F,
16-bit word length, and best-precision fraction length. Refer to Chapter 4,
“Working with fimath Objects” for more information on fimath objects.

• b = fi(a,F) allows you to maintain the value and numerictype object of
fi object a, while changing its fimath object to F.

• a = fi(v,T,F) returns a fixed-point object with value v,
embedded.numerictype T, and embedded.fimath F. The syntax a =
fi(v,T,F) is equivalent to a = fi(v,F,T).

• a = fi(v,s,F) returns a fixed-point object with value v, signedness s,
16-bit word length, best-precision fraction length, and embedded.fimath F.

• a = fi(v,s,w,F) returns a fixed-point object with value v, signedness s,
word length w, best-precision fraction length, and embedded.fimath F.
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• a = fi(v,s,w,f,F) returns a fixed-point object with value v, signedness s,
word length w, fraction length f, and embedded.fimath F.

• a = fi(v,s,w,slope,bias,F) returns a fixed-point object with value v,
signedness s, word length w, slope, bias, and embedded.fimath F.

• a = fi(v,s,w,slopeadjustmentfactor,fixedexponent,bias,F)
returns a fixed-point object with value v, signedness s, word length w,
slopeadjustmentfactor, fixedexponent, bias, and embedded.fimath F.

• a = fi(...'PropertyName',PropertyValue...) and a =
fi('PropertyName',PropertyValue...) allow you to set fixed-point
objects for a fi object by property name/property value pairs.

Examples of Constructing fi Objects
For example, the following creates a fi object with a value of pi, a word
length of 8 bits, and a fraction length of 3 bits:

a = fi(pi, 1, 8, 3)

a =

3.1250

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 8
FractionLength: 3

The value v can also be an array:

a = fi((magic(3)/10), 1, 16, 12)

a =

0.8000 0.1001 0.6001
0.3000 0.5000 0.7000
0.3999 0.8999 0.2000

DataTypeMode: Fixed-point: binary point scaling
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Signed: true
WordLength: 16

FractionLength: 12

If you omit the argument f, it is set automatically to the best precision
possible:

a = fi(pi, 1, 8)

a =

3.1563

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 8
FractionLength: 5

If you omit w and f, they are set automatically to 16 bits and the best precision
possible, respectively:

a = fi(pi, 1)

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13

Constructing a fi Object with Property Name/Property Value
Pairs
You can use property name/property value pairs to set fi properties when
you create the object:
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a = fi(pi, 'roundmode', 'floor', 'overflowmode', 'wrap')

a =

3.1415

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13

RoundMode: floor
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

Constructing a fi Object Using a numerictype Object
You can use a numerictype object to define a fi object:

T = numerictype

T =

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 15

a = fi(pi, T)

a =

1.0000
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DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 15

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

You can also use a fimath object with a numerictype object to define a fi
object:

F = fimath

F =

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

a = fi(pi, T, F)

a =

1.0000

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 15
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RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

Note The syntax a = fi(pi,T,F) is equivalent to a = fi(pi,F,T). You
can use both statements to define a fi object using a fimath object and a
numerictype object.

Constructing a fi Object Using a fimath Object
You can create a fi object using a specific fimath object. By default, the word
length is 16 bits, and the scaling is best precision:

F = fimath

F =

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

F.OverflowMode = 'wrap'

F =

RoundMode: nearest
OverflowMode: wrap
ProductMode: FullPrecision
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MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

a = fi(pi, F)

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13

RoundMode: nearest
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

You can also create fi objects using a fimath object while specifying various
numerictype properties at creation time:

b = fi(pi, 0, F)

b =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signed: false

WordLength: 16
FractionLength: 14

RoundMode: nearest
OverflowMode: wrap
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ProductMode: FullPrecision
MaxProductWordLength: 128

SumMode: FullPrecision
MaxSumWordLength: 128

CastBeforeSum: true

c = fi(pi, 0, 8, F)

c =

3.1406

DataTypeMode: Fixed-point: binary point scaling
Signed: false

WordLength: 8
FractionLength: 6

RoundMode: nearest
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

d = fi(pi, 0, 8, 6, F)

d =

3.1406

DataTypeMode: Fixed-point: binary point scaling
Signed: false

WordLength: 8
FractionLength: 6

RoundMode: nearest
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
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SumMode: FullPrecision
MaxSumWordLength: 128

CastBeforeSum: true

Determining Property Precedence
The value of a property is taken from the last time it is set. For example,
create a numerictype object with a value of true for the signed property
and a fraction length of 14:

T = numerictype('signed', true, 'FractionLength', 14)

T =

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 14

Now, create the following fi object in which the numerictype property is
specified after the signed property, so that the resulting fi object is signed:

a = fi(pi,'signed',false,'numerictype',T)

a =

1.0000

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 14

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true
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Contrast the fi object in this code sample with the fi object in the following
code sample. The numerictype property in the following code sample is
specified before the signed property, so the resulting fi object is unsigned:

b = fi(pi,'numerictype',T,'signed',false)

b =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signed: false

WordLength: 16
FractionLength: 14

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

Copying a fi Object
To copy a fi object, simply use assignment, as in the following example:

a = fi(pi)

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13

b = a

b =
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3.1416

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13
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Casting fi Objects

In this section...

“Overwriting by Assignment” on page 3-14

“Ways to Cast in MATLAB® Software” on page 3-14

Overwriting by Assignment
Because MATLAB® software does not have type declarations, an assignment
like A = B replaces the type and content of A with the type and content of B. If
A does not exist at the time of the assignment, MATLAB creates the variable
A and assigns it the same type and value as B. Such assignment happens
with all types in MATLAB—objects and built-in types alike—including fi,
double, single, int8, uint8, int16, etc.

For example, the following code overwrites the value and int8 type of A with
the value and int16 type of B:

A = int8(0);
B = int16(32767);
A = B

A =

32767

class(A)

ans =

int16

Ways to Cast in MATLAB® Software
You may find it useful to cast data into another type—for example, when you
are casting data from an accumulator to memory. There are two ways to
cast data in MATLAB:

• Casting by Subscripted Assignment
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• Casting by Conversion Function

Casting by Subscripted Assignment
The following subscripted assignment statement retains the type of A and
saturates the value of B to an int8:

A = int8(0);
B = int16(32767);
A(:) = B

A =

127

class(A)

ans =

int8

The same is true for fi objects:

fipref('NumericTypeDisplay', 'short', 'FimathDisplay', 'none');
A = fi(0, true, 8, 0);
B = fi(32767, true, 16, 0);
A(:) = B

A =

127
s8,0

Note For more information on subscripted assignments, see the subsasgn
function.
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Casting by Conversion Function
You can convert from one data type to another by using a conversion function.
In this example, A does not have to be predefined because it is overwritten.

B = int16(32767);
A = int8(B)

A =

127

class(A)

ans =

int8

The same is true for fi objects:

B = fi(32767, true, 16, 0)
A = fi(B, 1, 8, 0)

B =

32767
s16,0

A =

127
s8,0

Using a numerictype Object in the fi Conversion Function
Often a specific numerictype is used in many places, and it is convenient
to predefine numerictype objects for use in the conversion functions.
Predefining these objects is a good practice because it also puts the data type
specification in one place.

T8 = numerictype(1,8,0)
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T8 =

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 8
FractionLength: 0

T16 = numerictype(1,16,0)

T16 =

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 0

B = fi(32767,T16)

B =

32767
s16,0

A = fi(B, T8)

A =

127
s8,0

3-17



3 Working with fi Objects

fi Object Properties

In this section...

“Data Properties” on page 3-18

“fimath Properties” on page 3-18

“numerictype Properties” on page 3-19

“Setting fi Object Properties” on page 3-20

Data Properties
The data properties of a fi object are always writable:

• bin — Stored integer value of a fi object in binary

• data — Numerical real-world value of a fi object

• dec — Stored integer value of a fi object in decimal

• double — Real-world value of a fi object, stored as a MATLAB® double
data type

• hex — Stored integer value of a fi object in hexadecimal

• int — Stored integer value of a fi object, stored in a built-in MATLAB
integer data type. You can also use int8, int16, int32, uint8, uint16, and
uint32 to get the stored integer value of a fi object in these formats

• oct — Stored integer value of a fi object in octal

fimath Properties
When you create a fi object, a fimath object is also automatically created as
a property of the fi object:

• fimath — fimath object associated with a fi object

The following fimath properties are, by transitivity, also properties of a fi
object. The properties of the fimath object listed below are always writable:

• CastBeforeSum — Whether both operands are cast to the sum data type
before addition
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• MaxProductWordLength — Maximum allowable word length for the product
data type

• MaxSumWordLength — Maximum allowable word length for the sum data
type

• OverflowMode — Overflow mode

• ProductBias — Bias of the product data type

• ProductFixedExponent — Fixed exponent of the product data type

• ProductFractionLength — Fraction length, in bits, of the product data
type

• ProductMode — Defines how the product data type is determined

• ProductSlope — Slope of the product data type

• ProductSlopeAdjustmentFactor — Slope adjustment factor of the product
data type

• ProductWordLength — Word length, in bits, of the product data type

• RoundMode — Rounding mode

• SumBias — Bias of the sum data type

• SumFixedExponent — Fixed exponent of the sum data type

• SumFractionLength — Fraction length, in bits, of the sum data type

• SumMode — Defines how the sum data type is determined

• SumSlope — Slope of the sum data type

• SumSlopeAdjustmentFactor — Slope adjustment factor of the sum data
type

• SumWordLength — The word length, in bits, of the sum data type

numerictype Properties
When you create a fi object, a numerictype object is also automatically
created as a property of the fi object:

• numerictype — Object containing all the numeric type attributes of a fi
object
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The following numerictype properties are, by transitivity, also properties of
a fi object. The properties of the numerictype object listed below are not
writable once the fi object has been created. However, you can create a copy
of a fi object with new values specified for the numerictype properties:

• Bias — Bias of a fi object

• DataType — Data type category associated with a fi object

• DataTypeMode — Data type and scaling mode of a fi object

• FixedExponent — Fixed-point exponent associated with a fi object

• FractionLength — Fraction length of the stored integer value of a fi
object in bits

• Scaling — Fixed-point scaling mode of a fi object

• Signed — Whether a fi object is signed or unsigned

• Slope — Slope associated with a fi object

• SlopeAdjustmentFactor — Slope adjustment associated with a fi object

• WordLength — Word length of the stored integer value of a fi object in bits

These properties are described in detail in the Property Reference. There
are two ways to specify properties for fi objects in Fixed-Point Toolbox™
software. Refer to the following sections:

• “Setting Fixed-Point Properties at Object Creation” on page 3-21

• “Using Direct Property Referencing with fi” on page 3-21

Setting fi Object Properties
you can set fi object properties in two ways:

• Setting the properties when you create the object

• Using direct property referencing
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Setting Fixed-Point Properties at Object Creation
You can set properties of fi objects at the time of object creation by including
properties after the arguments of the fi constructor function. For example, to
set the overflow mode to wrap and the rounding mode to convergent,

a = fi(pi, 'OverflowMode', 'wrap', 'RoundMode', 'convergent')

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13

RoundMode: convergent
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

Using Direct Property Referencing with fi
You can reference directly into a property for setting or retrieving fi object
property values using MATLAB structure-like referencing. You do so by using
a period to index into a property by name.

For example, to get the DataTypeMode of a,

a.DataTypeMode

ans =

Fixed-point: binary point scaling
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To set the OverflowMode of a,

a.OverflowMode = 'wrap'

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13

RoundMode: convergent
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true
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fi Object Functions
You can learn about the functions associated with fi objects in the Function
Reference.

The following data-access functions can be also used to get the data in a fi
object using dot notation.

• bin

• data

• dec

• double

• hex

• int

• oct

For example,

a = fi(pi);
n = int(a)

n =

25736

a.int

ans =

25736

h = hex(a)

h =

6488

3-23



3 Working with fi Objects

a.hex

ans =

6488
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Working with fimath
Objects

Constructing fimath Objects (p. 4-2) Teaches you how to create fimath
objects

fimath Object Properties (p. 4-4) Tells you how to find more
information about the properties
associated with fimath objects,
and shows you how to set these
properties

Using fimath Objects to Perform
Fixed-Point Arithmetic (p. 4-8)

Gives examples of using fimath
objects to control the results of
fixed-point arithmetic with fi
objects

Using fimath to Specify Rounding
and Overflow Modes (p. 4-16)

Gives an example that shows that
the order in which you set overflow
and rounding modes matters

Using fimath to Share Arithmetic
Rules (p. 4-17)

Gives an example of using a fimath
object to share modular arithmetic
information among multiple fi
objects

Using fimath ProductMode and
SumMode (p. 4-19)

Shows the differences among the
different settings of the ProductMode
and SumMode properties

fimath Object Functions (p. 4-25) Introduces the functions in the
toolbox that operate directly on
fimath objects
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Constructing fimath Objects
fimath objects define the arithmetic attributes of fi objects. You can create
fimath objects in Fixed-Point Toolbox™ software in one of two ways:

• You can use the fimath constructor function to create a new object.

• You can use the fimath constructor function to copy an existing fimath
object.

To get started, type

F = fimath

to create a default fimath object.

F = fimath

F =

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

To copy a fimath object, simply use assignment as in the following example:

F = fimath;
G = F;
isequal(F,G)

ans =

1
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The syntax

F = fimath(...'PropertyName',PropertyValue...)

allows you to set properties for a fimath object at object creation with
property name/property value pairs. Refer to “Setting fimath Properties at
Object Creation” on page 4-5.
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fimath Object Properties

In this section...

“Math, Rounding, and Overflow Properties” on page 4-4

“Setting fimath Object Properties” on page 4-5

Math, Rounding, and Overflow Properties
The following properties of fimath objects are always writable:

• CastBeforeSum — Whether both operands are cast to the sum data type
before addition

• MaxProductWordLength — Maximum allowable word length for the product
data type

• MaxSumWordLength — Maximum allowable word length for the sum data
type

• OverflowMode — Overflow-handling mode

• ProductBias — Bias of the product data type

• ProductFixedExponent — Fixed exponent of the product data type

• ProductFractionLength — Fraction length, in bits, of the product data
type

• ProductMode — Defines how the product data type is determined

• ProductSlope — Slope of the product data type

• ProductSlopeAdjustmentFactor — Slope adjustment factor of the product
data type

• ProductWordLength — Word length, in bits, of the product data type

• RoundMode — Rounding mode

• SumBias — Bias of the sum data type

• SumFixedExponent — Fixed exponent of the sum data type

• SumFractionLength — Fraction length, in bits, of the sum data type

• SumMode — Defines how the sum data type is determined
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• SumSlope — Slope of the sum data type

• SumSlopeAdjustmentFactor — Slope adjustment factor of the sum data
type

• SumWordLength — Word length, in bits, of the sum data type

These properties are described in detail in the Property Reference. To learn
how to specify properties for fimath objects in Fixed-Point Toolbox™ software,
refer to “Setting fimath Object Properties” on page 4-5.

Setting fimath Object Properties

Setting fimath Properties at Object Creation
You can set properties of fimath objects at the time of object creation by
including properties after the arguments of the fimath constructor function.

For example, to set the overflow mode to saturate and the rounding mode to
convergent,

F = fimath('OverflowMode','saturate','RoundMode','convergent')

F =

RoundMode: convergent
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

Using Direct Property Referencing with fimath
You can reference directly into a property for setting or retrieving fimath
object property values using MATLAB® structure-like referencing. You do this
by using a period to index into a property by name.
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For example, to get the RoundMode of F,

F.RoundMode

ans =

convergent

To set the OverflowMode of F,

F.OverflowMode = 'wrap'

F =

RoundMode: convergent
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

Setting fimath Properties in the Model Explorer
You can view and change the properties for any fimath object defined in the
MATLAB workspace in the Model Explorer. Open the Model Explorer by
selecting View > Model Explorer in any Simulink® model, or by typing
daexplr at the MATLAB command line.

The figure below shows the Model Explorer when you define the following
fimath objects in the MATLAB workspace:

F = fimath

F =

RoundMode: nearest
OverflowMode: saturate
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ProductMode: FullPrecision
MaxProductWordLength: 128

SumMode: FullPrecision
MaxSumWordLength: 128

CastBeforeSum: true

G = fimath('OverflowMode','wrap')

G =

RoundMode: nearest
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

Select the Base Workspace node in the Model Hierarchy pane to view the
current objects in the Contents pane. When you select a fimath object in the
Contents pane, you can view and change its properties in the Dialog pane.
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Using fimath Objects to Perform Fixed-Point Arithmetic

In this section...

“Binary Point Arithmetic” on page 4-8

“[Slope Bias] Arithmetic” on page 4-12

Binary Point Arithmetic
The fimath object encapsulates the math properties of Fixed-Point Toolbox™
software, and is itself a property of the fi object.

Every fi object has a fimath object as a property.

a = fi(pi)

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

a.fimath

ans =
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RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

To perform arithmetic with +, -, .*, or *, two fi operands must have the
same fimath properties.

a = fi(pi);
b = fi(8);
isequal(a.fimath, b.fimath)

ans =

1

a + b

ans =

11.1416

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 19
FractionLength: 13

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true
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To perform arithmetic with +, -, .*, or *, two fi operands must also have the
same data type. For example, you can perform addition on two fi objects
with data type double, but not on an object with data type double and one
with data type single:

a = fi(3, 'DataType', 'double')

a =

3

DataTypeMode: double

b = fi(27, 'DataType', 'double')

b =

27

DataTypeMode: double

a + b

ans =

30

DataTypeMode: double

c = fi(12, 'DataType', 'single')

c =

12

DataTypeMode: single

a + c
??? Math operations are not allowed on FI objects with

different data types.
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Fixed-point fi object operands do not have to have the same scaling. Math is
permitted between fixed-point and scaled doubles fi objects. In this sense,
the scaled double data type acts as a fixed-point data type:

a = fi(pi)

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

b = fi(magic(2), ...
'DataTypeMode', 'Scaled double: binary point scaling')

b =

1 3
4 2

DataTypeMode: Scaled double: binary point scaling
Signed: true

WordLength: 16
FractionLength: 12

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision
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MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

a + b

ans =

4.1416 6.1416
7.1416 5.1416

DataTypeMode: Scaled double: binary point scaling
Signed: true

WordLength: 18
FractionLength: 13

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

Use the divide function to perform division with doubles, singles, or binary
point-only scaling fi objects.

[Slope Bias] Arithmetic
Fixed-point arithmetic using the fimath object is supported for all binary
point-only signals. Arithmetic is also supported for [Slope Bias] signals with
the following restrictions:

• [Slope Bias] signals must be real.

• The fimath object SumMode and ProductMode properties must be set to
'SpecifyPrecision' for sum and multiply operations, respectively.

• The fimath object CastBeforeSum property must be set to 'true'.
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• The divide function is not supported for [Slope Bias] signals.

f = fimath('SumMode', 'SpecifyPrecision', ...
'SumFractionLength', 16)

f =

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: SpecifyPrecision

SumWordLength: 32
SumFractionLength: 16

CastBeforeSum: true

a = fi(pi, 'fimath', f)

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: SpecifyPrecision

SumWordLength: 32
SumFractionLength: 16

CastBeforeSum: true

b = fi(22, true, 16, 2^-8, 3, 'fimath', f)

b =
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22

DataTypeMode: Fixed-point: slope and bias scaling
Signed: true

WordLength: 16
Slope: 0.00390625
Bias: 3

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: SpecifyPrecision

SumWordLength: 32
SumFractionLength: 16

CastBeforeSum: true

a + b

ans =

25.1416

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 32
FractionLength: 16

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: SpecifyPrecision

SumWordLength: 32
SumFractionLength: 16

CastBeforeSum: true

Setting the SumMode and ProductMode properties to SpecifyPrecision are
mutually exclusive except when performing the * operation between matrices.
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In this case, both the SumMode and ProductMode properties must be set to
SpecifyPrecision for [Slope Bias] signals, because both sum and multiply
operations are performed while calculating the result.
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Using fimath to Specify Rounding and Overflow Modes
Only rounding and overflow modes set prior to an operation with fi objects
affect the outcome of those operations. Changing the rounding or overflow
mode of a fi object after it has been created does not affect its value. For
example, consider the fi objects a and b:

p = fipref('NumberDisplay', 'RealWorldValue',...
'NumericTypeDisplay', 'none', 'FimathDisplay', 'none');
T = numerictype('WordLength',8,'FractionLength',7);
F = fimath('RoundMode','floor','OverflowMode','wrap');
a = fi(1,T,F)

a =

-1
b = fi(1,T)

b =

0.9922

Because a is created with fimath object F that has OverflowMode set to wrap,
its value wrapped to -1. On the other hand, b is created with the default
OverflowMode value of saturate, so its value is saturated to 0.9922.

Now assign the fimath object F to b:

b.fimath = F

b =

0.9922

Because the assignment operation and corresponding overflow and saturation
already happened when b was created, no change happens to b when it is
assigned the new fimath object F, even though its rounding mode changed
from saturate to wrap.
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Using fimath to Share Arithmetic Rules
You can use a fimath object to define common arithmetic rules that you
would like to use for many fi objects. You can then create multiple fi
objects, using the same fimath object for each. To do so, you also need to
create a numerictype object to define a common data type and scaling. Refer
to Chapter 6, “Working with numerictype Objects” for more information
on numerictype objects. The following example shows the creation of a
numerictype object and fimath object, which are then used to create two fi
objects with the same numerictype and fimath attributes:

T = numerictype('WordLength', 32, 'FractionLength', 30)

T =

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 32
FractionLength: 30

F = fimath('RoundMode', 'floor', 'OverflowMode', 'wrap')

F =

RoundMode: floor
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

a = fi(pi, T, F)

a =

-0.8584
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DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 32
FractionLength: 30

RoundMode: floor
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

b = fi(pi/2, T, F)

b =

1.5708

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 32
FractionLength: 30

RoundMode: floor
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true
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Using fimath ProductMode and SumMode

In this section...

“Example Setup” on page 4-19

“FullPrecision” on page 4-20

“KeepLSB” on page 4-21

“KeepMSB” on page 4-22

“SpecifyPrecision” on page 4-23

Example Setup
The examples in the sections of this topic show the differences among the four
settings of the ProductMode and SumMode properties:

• FullPrecision

• KeepLSB

• KeepMSB

• SpecifyPrecision

To follow along, first set the following preferences:

p = fipref;
p.NumericTypeDisplay = 'short';
p.FimathDisplay = 'none';
p.LoggingMode = 'on';
F = fimath('OverflowMode','wrap','RoundMode','floor',...

'CastBeforeSum',false);
warning off
format compact

Next define fi objects a and b. Both have signed 8-bit data types. The
fraction length is automatically chosen for each fi object to yield the best
possible precision:

a = fi(pi, true, 8)
a =
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3.1563
s8,5

b = fi(exp(1), true, 8)
b =

2.7188
s8,5

FullPrecision
Now set ProductMode and SumMode for a and b to FullPrecision and look
at some results:

F.ProductMode = 'FullPrecision';
F.SumMode = 'FullPrecision';
a.fimath = F;
b.fimath = F;
a
a =

3.1563 %011.00101
s8,5

b
b =

2.7188 %010.10111
s8,5

a*b
ans =

8.5811 %001000.1001010011
s16,10

a+b
ans =

5.8750 %0101.11100
s9,5

In FullPrecision mode, the product word length grows to the sum of the
word lengths of the operands. In this case, each operand has 8 bits, so the
product word length is 16 bits. The product fraction length is the sum of the
fraction lengths of the operands, in this case 5 + 5 = 10 bits.

The sum word length grows by one most significant bit to accommodate the
possibility of a carry bit. The sum fraction length is aligned with the fraction
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lengths of the operands, and all fractional bits are kept for full precision. In
this case, both operands have 5 fractional bits, so the sum has 5 fractional bits.

KeepLSB
Now set ProductMode and SumMode for a and b to KeepLSB and look at some
results:

F.ProductMode = 'KeepLSB';
F.ProductWordLength = 12;
F.SumMode = 'KeepLSB';
F.SumWordLength = 12;
a.fimath = F;
b.fimath = F;
a
a =

3.1563 %011.00101
s8,5

b
b =

2.7188 %010.10111
s8,5

a*b
ans =

0.5811 %00.1001010011
s12,10

a+b
ans =

5.8750 %0000101.11100
s12,5

In KeepLSB mode, you specify the word lengths and the least significant bits
of results are automatically kept. This mode models the behavior of integer
operations in the C language.

The product fraction length is the sum of the fraction lengths of the operands.
In this case, each operand has 5 fractional bits, so the product fraction length
is 10 bits. In this mode, all 10 fractional bits are kept. Overflow occurs
because the full-precision result requires 6 integer bits, and only 2 integer
bits remain in the product.
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The sum fraction length is aligned with the fraction lengths of the operands,
and in this model all least significant bits are kept. In this case, both operands
had 5 fractional bits, so the sum has 5 fractional bits. The full-precision result
requires 4 integer bits, and 7 integer bits remain in the sum, so no overflow
occurs in the sum.

KeepMSB
Now set ProductMode and SumMode for a and b to KeepMSB and look at some
results:

F.ProductMode = 'KeepMSB';
F.ProductWordLength = 12;
F.SumMode = 'KeepMSB';
F.SumWordLength = 12;
a.fimath = F;
b.fimath = F;
a
a =

3.1563 %011.00101
s8,5

b
b =

2.7188 %010.10111
s8,5

a*b
ans =

8.5781 %001000.100101
s12,6

a+b
ans =

5.8750 %0101.11100000
s12,8

In KeepMSB mode, you specify the word lengths and the most significant
bits of sum and product results are automatically kept. This mode models
the behavior of many DSP devices where the product and sum are kept in
double-wide registers, and the programmer chooses to transfer the most
significant bits from the registers to memory after each operation.
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The full-precision product requires 6 integer bits, and the fraction length of
the product is adjusted to accommodate all 6 integer bits in this mode. No
overflow occurs. However, the full-precision product requires 10 fractional
bits, and only 6 are available. Therefore, precision is lost.

The full-precision sum requires 4 integer bits, and the fraction length of
the sum is adjusted to accommodate all 4 integer bits in this mode. The
full-precision sum requires only 5 fractional bits; in this case there are 8, so
there is no loss of precision.

SpecifyPrecision
Now set ProductMode and SumMode for a and b to SpecifyPrecision and
look at some results:

F.ProductMode = 'SpecifyPrecision';
F.ProductWordLength = 8;
F.ProductFractionLength = 7;
F.SumMode = 'SpecifyPrecision';
F.SumWordLength = 8;
F.SumFractionLength = 7;
a.fimath = F;
b.fimath = F;
a
a =

3.1563 %011.00101
s8,5

b
b =

2.7188 %010.10111
s8,5

a*b
ans =

0.5781 %0.1001010
s8,7

a+b
ans =

-0.1250 %1.1110000
s8,7
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In SpecifyPrecision mode, you must specify both word length and fraction
length for sums and products. This example unwisely uses fractional formats
for the products and sums, with 8-bit word lengths and 7-bit fraction lengths.

The full-precision product requires 6 integer bits, and the example specifies
only 1, so the product overflows. The full-precision product requires 10
fractional bits, and the example only specifies 7, so there is precision loss in
the product.

The full-precision sum requires 2 integer bits, and the example specifies only
1, so the sum overflows. The full-precision sum requires 5 fractional bits, and
the example specifies 7, so there is no loss of precision in the sum.
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fimath Object Functions
You can learn about the functions associated with fimath objects in the
Function Reference.
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Working with fipref Objects

Constructing fipref Objects (p. 5-2) Teaches you how to create fipref
objects

fipref Object Properties (p. 5-3) Tells you how to find more
information about the properties
associated with fipref objects,
and shows you how to set these
properties

Using fipref Objects to Set Display
Preferences (p. 5-5)

Gives examples of using fipref
objects to set display preferences for
fi objects

Using fipref Objects to Set Logging
Preferences (p. 5-7)

Gives examples of using fipref
objects to set logging preferences for
fi objects

Using fipref Objects to Set Data
Type Override Preferences (p. 5-12)

Describes how to use the fipref
object to perform data type override

fipref Object Functions (p. 5-15) Introduces the functions in the
toolbox that operate directly on
fipref objects
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Constructing fipref Objects
The fipref object defines the display and logging attributes for all fi objects.
You can use the fipref constructor function to create a new object.

To get started, type

P = fipref

to create a default fipref object.

P =
NumberDisplay: 'RealWorldValue'

NumericTypeDisplay: 'full'
FimathDisplay: 'full'

LoggingMode: 'Off'
DataTypeOverride: 'ForceOff'

The syntax

P = fipref(...'PropertyName','PropertyValue'...)

allows you to set properties for a fipref object at object creation with property
name/property value pairs.

Your fipref settings persist throughout your MATLAB® session. Use
reset(fipref) to return to the default settings during your session. Use
savefipref to save your display preferences for subsequent MATLAB
sessions.
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fipref Object Properties

In this section...

“Display, Data Type Override, and Logging Properties” on page 5-3

“Setting fipref Object Properties” on page 5-3

Display, Data Type Override, and Logging Properties
The following properties of fipref objects are always writable:

• FimathDisplay — Display options for the fimath attributes of a fi object

• DataTypeOverride — Data type override options

• LoggingMode — Logging options for operations performed on fi objects

• NumericTypeDisplay — Display options for the numeric type attributes of
a fi object

• NumberDisplay — Display options for the value of a fi object

These properties are described in detail in the Property Reference. To learn
how to specify properties for fipref objects in Fixed-Point Toolbox™ software,
refer to “Setting fipref Object Properties” on page 5-3.

Setting fipref Object Properties

Setting fipref Properties at Object Creation
You can set properties of fipref objects at the time of object creation by
including properties after the arguments of the fipref constructor function.
For example, to set NumberDisplay to bin and NumericTypeDisplay to short,

P = fipref('NumberDisplay', 'bin', ...
'NumericTypeDisplay', 'short')

P =
NumberDisplay: 'bin'

NumericTypeDisplay: 'short'
FimathDisplay: 'full'

5-3



5 Working with fipref Objects

LoggingMode: 'Off'
DataTypeOverride: 'ForceOff'

Using Direct Property Referencing with fipref
You can reference directly into a property for setting or retrieving fipref
object property values using MATLAB® structure-like referencing. You do this
by using a period to index into a property by name.

For example, to get the NumberDisplay of P,

P.NumberDisplay

ans =

bin

To set the NumericTypeDisplay of P,

P.NumericTypeDisplay = 'full'

P =
NumberDisplay: 'bin'

NumericTypeDisplay: 'full'
FimathDisplay: 'full'

LoggingMode: 'Off'
DataTypeOverride: 'ForceOff'
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Using fipref Objects to Set Display Preferences
You use the fipref object to dictate three aspects of the display of fi objects:
how the value of a fi object is displayed, how the fimath properties are
displayed, and how the numerictype properties are displayed.

For example, the following shows the default fipref display for a fi object:

a = fi(pi)

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

Now, change the fipref display properties:

P = fipref;
P.NumberDisplay = 'bin';
P.NumericTypeDisplay = 'short';
P.FimathDisplay = 'none'

P =
NumberDisplay: 'bin'

NumericTypeDisplay: 'short'
FimathDisplay: 'none'

LoggingMode: 'Off'
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DataTypeOverride: 'ForceOff'
a

a =
0110010010001000

s16,13
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Using fipref Objects to Set Logging Preferences

In this section...

“Logging Overflows and Underflows as Warnings” on page 5-7

“Accessing Logged Information with Functions” on page 5-9

Logging Overflows and Underflows as Warnings
Overflows and underflows are logged as warnings for all assignment, plus,
minus, and multiplication operations when the fipref LoggingMode property
is set to on. For example, try the following:

1 Create a signed fi object that is a vector of values from 1 to 5, with 8-bit
word length and 6-bit fraction length.

a = fi(1:5,1,8,6);

2 Define the fimath object associated with a, and indicate that you will
specify the sum and product word and fraction lengths.

F = a.fimath;
F.SumMode = 'SpecifyPrecision';
F.ProductMode = 'SpecifyPrecision';
a.fimath = F;

3 Define the fipref object and turn on overflow and underflow logging.

P = fipref;
P.LoggingMode = 'on';

4 Suppress the numerictype and fimath displays.

P.NumericTypeDisplay = 'none';
P.FimathDisplay = 'none';

5 Specify the sum and product word and fraction lengths.

a.SumWordLength = 16;
a.SumFractionLength = 15;
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a.ProductWordLength = 16;
a.ProductFractionLength = 15;

6 Warnings are displayed for overflows and underflows in assignment
operations. For example, try:

a(1) = pi
Warning: 1 overflow occurred in the fi assignment operation.

a =

1.9844 1.9844 1.9844 1.9844 1.9844
a(1) = double(eps(a))/10
Warning: 1 underflow occurred in the fi assignment operation.

a =

0 1.9844 1.9844 1.9844 1.9844

7 Warnings are displayed for overflows and underflows in addition and
subtraction operations. For example, try:

a+a
Warning: 12 overflows occurred in the fi + operation.

ans =

0 1.0000 1.0000 1.0000 1.0000
a-a
Warning: 8 overflows occurred in the fi - operation.

ans =

0 0 0 0 0

8 Warnings are displayed for overflows and underflows in multiplication
operations. For example, try:

a.*a
Warning: 4 product overflows occurred in the fi .* operation.
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ans =

0 1.0000 1.0000 1.0000 1.0000

a*a'
Warning: 4 product overflows occurred in the fi * operation.
Warning: 3 sum overflows occurred in the fi * operation.

ans =

1.0000

The final example above is a complex multiplication that requires both
multiplication and addition operations. The warnings inform you of overflows
and underflows in both.

Because overflows and underflows are logged as warnings, you can use the
dbstop MATLAB® function with the syntax

dbstop if warning

to find the exact lines in an M-file that are causing overflows or underflows.

Use

dbstop if warning fi:underflow

to stop only on lines that cause an underflow. Use

dbstop if warning fi:overflow

to stop only on lines that cause an overflow.

Accessing Logged Information with Functions
When the fipref LoggingMode property is set to on, you can use the following
functions to return logged information about assignment and creation
operations to the MATLAB command line:

• maxlog — Returns the maximum real-world value
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• minlog — Returns the minimum value

• noverflows — Returns the number of overflows

• nunderflows — Returns the number of underflows

LoggingMode must be set to on before you perform any operation in order to
log information about it. To clear the log, use the function resetlog.

For example, consider the following. First turn logging on, then perform
operations, and then finally get information about the operations:

fipref('LoggingMode','on');
x = fi([-1.5 eps 0.5], true, 16, 15);
x(1) = 3.0;
maxlog(x)

ans =

3

minlog(x)

ans =

-1.5000

noverflows(x)

ans =

2

nunderflows(x)

ans =

1
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Next, reset the log and request the same information again. Note that the
functions return empty [], because logging has been reset since the operations
were run:

resetlog(x)
maxlog(x)

ans =

[]

minlog(x)

ans =

[]

noverflows(x)

ans =

[]

nunderflows(x)

ans =

[]
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Using fipref Objects to Set Data Type Override Preferences

In this section...

“Overriding the Data Type of fi Objects” on page 5-12

“Using Data Type Override to Help Set Fixed-Point Scaling” on page 5-13

Overriding the Data Type of fi Objects
Use the fipref DataTypeOverride property to override fi objects with
singles, doubles, or scaled doubles. Data type override only occurs when the
fi constructor function is called. Objects that are created while data type
override is on have the overridden data type. They maintain that data type
when data type override is later turned off. To obtain an object with a data
type that is not the override data type, you must create an object when data
type override is off:

p = fipref('DataTypeOverride', 'TrueDoubles')

p =

NumberDisplay: 'RealWorldValue'
NumericTypeDisplay: 'full'

FimathDisplay: 'full'
LoggingMode: 'Off'

DataTypeOverride: 'TrueDoubles'

a = fi(pi)

a =

3.1416

DataTypeMode: double

p = fipref('DataTypeOverride', 'ForceOff')

p =
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NumberDisplay: 'RealWorldValue'
NumericTypeDisplay: 'full'

FimathDisplay: 'full'
LoggingMode: 'Off'

DataTypeOverride: 'ForceOff'

a

a =

3.1416

DataTypeMode: double

b = fi(pi)

b =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13

Tip To reset the fipref object to its default values use reset(fipref) or
reset(p), where p is a fipref object. This is useful to ensure that data type
override and logging are off.

Using Data Type Override to Help Set Fixed-Point
Scaling
Choosing the scaling for the fixed-point variables in your algorithms can be
difficult. In Fixed-Point Toolbox™ software, you can use a combination of
data type override and min/max logging to help you discover the numerical
ranges that your fixed-point data types need to cover. These ranges dictate
the appropriate scalings for your fixed-point data types. In general, the
procedure is
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1 Implement your algorithm using fixed-point fi objects, using initial “best
guesses” for word lengths and scalings.

2 Set the fipref DataTypeOverride property to ScaledDoubles,
TrueSingles, or TrueDoubles.

3 Set the fipref LoggingMode property to on.

4 Use the maxlog and minlog functions to log the maximum and minimum
values achieved by the variables in your algorithm in floating-point mode.

5 Set the fipref DataTypeOverride property to ForceOff.

6 Use the information obtained in step 4 to set the fixed-point scaling for
each variable in your algorithm such that the full numerical range of each
variable is representable by its data type and scaling.

A detailed example of this process is shown in the Fixed-Point Toolbox
“Fixed-Point Data Type Override, Min/Max Logging, and Scaling” demo.
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fipref Object Functions
You can learn about the functions associated with fipref objects in the
Function Reference.
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Working with numerictype
Objects

Constructing numerictype Objects
(p. 6-2)

Teaches you how to create
numerictype objects

numerictype Object Properties
(p. 6-6)

Tells you how to find more
information about the properties
associated with numerictype objects,
and shows you how to set these
properties

The numerictype Structure (p. 6-10) Presents the numerictype object as
a MATLAB® structure, and gives the
valid fields and settings for those
fields

Using numerictype Objects to Share
Data Type and Scaling Settings
(p. 6-13)

Gives an example of using a
numerictype object to share
modular data type and scaling
information among multiple fi
objects

numerictype Object Functions
(p. 6-16)

Introduces the functions in the
toolbox that operate directly on
numerictype objects
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Constructing numerictype Objects

In this section...

“numerictype Object Syntaxes” on page 6-2

“Examples of Constructing numerictype Objects” on page 6-3

numerictype Object Syntaxes
numerictype objects define the data type and scaling attributes of fi objects.
You can create numerictype objects in Fixed-Point Toolbox™ software in
one of two ways:

• You can use the numerictype constructor function to create a new object.

• You can use the numerictype constructor function to copy an existing
numerictype object.

To get started, type

T = numerictype

to create a default numerictype object.

T =

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 15

You can use the numerictype constructor function in the following ways:

• T = numerictype creates a default numerictype object.

• T = numerictype(s) creates a numerictype object with Fixed-point:
unspecified scaling, signedness s, and 16-bit word length.

• T = numerictype(s,w) creates a numerictype object with Fixed-point:
unspecified scaling, signedness s, and word length w.
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• T = numerictype(s,w,f) creates a numerictype object with
Fixed-point: binary point scaling, signedness s, word length w,
and fraction length f.

• T = numerictype(s,w,slope,bias) creates a numerictype object with
Fixed-point: slope and bias scaling, signedness s, word length w,
slope, and bias.

• T = numerictype(s,w,slopeadjustmentfactor,fixedexponent,bias)
creates a numerictype object with Fixed-point: slope and bias
scaling, signedness s, word length w, slopeadjustmentfactor,
fixedexponent, and bias.

• T = numerictype(property1,value1, ...) allows you to set properties
for a numerictype object using property name/property value pairs.

• T = numerictype(T1, property1, value1, ...) allows you to make a
copy of an existing numerictype object, while modifying any or all of the
property values.

• T = numerictype('double') creates a double numerictype.

• T = numerictype('single') creates a single numerictype.

• T = numerictype('boolean') creates a Boolean numerictype.

Examples of Constructing numerictype Objects
For example, the following creates a signed numerictype object with a 32-bit
word length and 30-bit fraction length.

T = numerictype(1, 32, 30)

T =

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 32
FractionLength: 30

If you omit the argument f, scaling is unspecified.

T = numerictype(1, 32)
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T =

DataTypeMode: Fixed-point: unspecified scaling
Signed: true

WordLength: 32

If you omit the arguments w and f, the word length is automatically set to 16
bits and the scaling is unspecified.

T = numerictype(1)

T =

DataTypeMode: Fixed-point: unspecified scaling
Signed: true

WordLength: 16

Constructing a numerictype Object with Property
Name/Property Value Pairs
You can use property name/property value pairs to set numerictype properties
when you create the object.

T = numerictype('Signed', true, 'DataTypeMode', ...
'Fixed-point: slope and bias', 'WordLength', 32, 'Slope', ...
2^-2, 'Bias', 4)

T =

DataTypeMode: Fixed-point: slope and bias scaling
Signed: true

WordLength: 32
Slope: 0.25
Bias: 4
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Copying a numerictype Object
To copy a numerictype object, simply use assignment as in the following
example:

T = numerictype;
U = T;
isequal(T,U)

ans =

1
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numerictype Object Properties

In this section...

“Data Type and Scaling Properties” on page 6-6

“Setting numerictype Object Properties” on page 6-7

Data Type and Scaling Properties
All the properties of a numerictype object are writable. However, the
numerictype properties of a fi object are not writable once the fi object
has been created:

• Bias — Bias

• DataType — Data type category

• DataTypeMode — Data type and scaling mode

• FixedExponent — Fixed-point exponent

• SlopeAdjustmentFactor — Slope adjustment

• FractionLength — Fraction length of the stored integer value, in bits

• Scaling — Fixed-point scaling mode

• Signed — Signed or unsigned

• Slope — Slope

• WordLength — Word length of the stored integer value, in bits

These properties are described in detail in the Property Reference. To learn
how to specify properties for numerictype objects in Fixed-Point Toolbox™
software, refer to “Setting numerictype Object Properties” on page 6-7.
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Setting numerictype Object Properties

Setting numerictype Properties at Object Creation
You can set properties of numerictype objects at the time of object creation
by including properties after the arguments of the numerictype constructor
function.

For example, to set the word length to 32 bits and the fraction length to 30 bits,

T = numerictype('WordLength', 32, 'FractionLength', 30)

T =

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 32
FractionLength: 30

Using Direct Property Referencing with numerictype Objects
You can reference directly into a property for setting or retrieving numerictype
object property values using MATLAB® structure-like referencing. You do this
by using a period to index into a property by name.

For example, to get the word length of T,

T.WordLength

ans =

32

To set the fraction length of T,

T.FractionLength = 31

T =
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DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 32
FractionLength: 31

Setting numerictype Properties in the Model Explorer
You can view and change the properties for any numerictype object defined
in the MATLAB workspace in the Model Explorer. Open the Model Explorer
by selecting View > Model Explorer in any Simulink® model, or by typing
daexplr at the MATLAB command line.

The figure below shows the Model Explorer when you define the following
numerictype objects in the MATLAB workspace:

T = numerictype

T =

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 15

U = numerictype('DataTypeMode', 'Fixed-point: slope and bias')

U =

DataTypeMode: Fixed-point: slope and bias scaling
Signed: true

WordLength: 16
Slope: 2^-15
Bias: 0
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Select the Base Workspace node in the Model Hierarchy pane to view
the current objects in the Contents pane. When you select a numerictype
object in the Contents pane, you can view and change its properties in the
Dialog pane.
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The numerictype Structure

In this section...

“Possible Values of the numerictype Structure Properties” on page 6-10

“Properties That Affect the Slope” on page 6-11

“Stored Integer Value and Real World Value” on page 6-12

Possible Values of the numerictype Structure
Properties
The numerictype object contains all the data type and scaling attributes
of a fi object. The object acts the same way as any MATLAB® structure,
except that it only lets you set valid values for defined fields. The following
table shows the possible settings of each field of the structure that are valid
for fi objects.

DataTypeMode DataType Scaling Signed
Word-
Length

Fraction-
Length Slope Bias

Fully specified fixed-point data types

Fixed-point:
binary point
scaling

Fixed BinaryPoint 1/0

true/
false

positive
integer
from
1 to
65,536

positive
or
negative
integer

1 0

Fixed-point:
slope and
bias scaling

Fixed SlopeBias 1/0

true/
false

positive
integer
from
1 to
65,536

N/A any
floating-
point
number

any
floating-
point
number

Partially specified fixed-point data type

Fixed-point:
unspecified
scaling

Fixed Unspecified 1/0

true/
false

positive
integer
from
1 to
65,536

N/A N/A N/A
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DataTypeMode DataType Scaling Signed
Word-
Length

Fraction-
Length Slope Bias

Fully specified scaled double data types

Scaled
double:
binary point
scaling

ScaledDouble BinaryPoint 1/0

true/
false

positive
integer
from
1 to
65,536

positive
or
negative
integer

1 0

Scaled
double:
slope and
bias scaling

ScaledDouble SlopeBias 1/0

true/
false

positive
integer
from
1 to
65,536

N/A any
floating-
point
number

any
floating-
point
number

Partially specified scaled double data type

Scaled
double:
unspecified
scaling

ScaledDouble Unspecified 1/0

true/
false

positive
integer
from
1 to
65,536

N/A N/A N/A

Built-in data types

double double N/A 1
true

64 0 1 0

single single N/A 1
true

32 0 1 0

boolean boolean N/A 0
false

1 0 1 0

You cannot change the numerictype properties of a fi object after fi object
creation.

Properties That Affect the Slope
The Slope field of the numerictype structure is related to the
SlopeAdjustmentFactor and FixedExponent properties by
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slope slope adjustment factor fixed exponent= × 2

The FixedExponent and FractionLength properties are related by

fixed exponent fraction length= −

If you set the SlopeAdjustmentFactor, FixedExponent, or FractionLength
property, the Slope field is modified.

Stored Integer Value and Real World Value
The numerictype StoredIntegerValue and RealWorldValue properties are
related according to

real world value stored integer value -fraction length- = × 2

which is equivalent to

real world value

stored integer value slope a

-

            

=

× ( ddjustment factor biasfixed exponent× +2 )

If any of these properties is updated, the others are modified accordingly.
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Using numerictype Objects to Share Data Type and Scaling
Settings

You can use a numerictype object to define common data type and scaling
rules that you would like to use for many fi objects. You can then create
multiple fi objects, using the same numerictype object for each. The
following example shows the creation of a numerictype object, which is then
used to create two fi objects with the same numerictype attributes:

format long g
T = numerictype('WordLength',32,'FractionLength',28)

T =

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 32
FractionLength: 28

a = fi(pi,T)

a =

3.1415926553309

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 32
FractionLength: 28

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

6-13



6 Working with numerictype Objects

b = fi(pi/2, T)

b =

1.5707963258028

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 32
FractionLength: 28

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

The following example shows the creation of a numerictype object with
[Slope Bias] scaling, which is then used to create two fi objects with the
same numerictype attributes:

T = numerictype('scaling','slopebias','slope', 2^2, 'bias', 0)

T =

DataTypeMode: Fixed-point: slope and bias scaling
Signed: true

WordLength: 16
Slope: 2^2
Bias: 0
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c = fi(pi, T)

c =

4

DataTypeMode: Fixed-point: slope and bias scaling
Signed: true

WordLength: 16
Slope: 2^2
Bias: 0

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

d = fi(pi/2, T)

d =

0

DataTypeMode: Fixed-point: slope and bias scaling
Signed: true

WordLength: 16
Slope: 2^2
Bias: 0

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true
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numerictype Object Functions
You can learn about the functions associated with numerictype objects in the
Function Reference.
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Constructing quantizer Objects
You can use quantizer objects to quantize data sets. You can create
quantizer objects in Fixed-Point Toolbox™ software in one of two ways:

• You can use the quantizer constructor function to create a new object.

• You can use the quantizer constructor function to copy a quantizer object.

To create a quantizer object with default properties, type

q = quantizer

q =

DataMode = fixed
RoundMode = floor

OverflowMode = saturate
Format = [16 15]

To copy a quantizer object, simply use assignment as in the following
example:

q = quantizer;
r = q;
isequal(q,r)

ans =

1

A listing of all the properties of the quantizer object q you just created
is displayed along with the associated property values. All property values
are set to defaults when you construct a quantizer object this way. See
“quantizer Object Properties” on page 7-3 for more details.
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quantizer Object Properties
The following properties of quantizer objects are always writable:

• DataMode — Type of arithmetic used in quantization

• Format — Data format of a quantizer object

• OverflowMode — Overflow-handling mode

• RoundMode — Rounding mode

See the Property Reference for more details about these properties, including
their possible values.

For example, to create a fixed-point quantizer object with

• The Format property value set to [16,14]

• The OverflowMode property value set to 'saturate'

• The RoundMode property value set to 'ceil'

type

q = quantizer('datamode','fixed','format',[16,14],'overflowmode',...

'saturate','roundmode','ceil')

You do not have to include quantizer object property names when you set
quantizer object property values.

For example, you can create quantizer object q from the previous example
by typing

q = quantizer('fixed',[16,14],'saturate','ceil')

Note You do not have to include default property values when you construct
a quantizer object. In this example, you could leave out 'fixed' and
'saturate'.
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Quantizing Data with quantizer Objects
You construct a quantizer object to specify the quantization parameters
to use when you quantize data sets. You can use the quantize function to
quantize data according to a quantizer object’s specifications.

Once you quantize data with a quantizer object, its state values might
change.

The following example shows

• How you use quantize to quantize data

• How quantization affects quantizer object states

• How you reset quantizer object states to their default values using reset

1 Construct an example data set and a quantizer object.

format long g
randn('state',0);
x = randn(100,4);
q = quantizer([16,14]);

2 Retrieve the values of the maxlog and noverflows states.

q.maxlog

ans =

-1.79769313486232e+308

q.noverflows

ans =

0

Note that maxlog is equal to -realmax, which indicates that the quantizer
q is in a reset state.

3 Quantize the data set according to the quantizer object’s specifications.
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y = quantize(q,x);
Warning: 15 overflows.

4 Check the values of maxlog and noverflows.

q.maxlog

ans =

1.99993896484375

q.noverflows

ans =

15

Note that the maximum logged value was taken after quantization, that is,
q.maxlog == max(y).

5 Reset the quantizer states and check them.

reset(q)
q.maxlog

ans =

-1.79769313486232e+308

q.noverflows

ans =

0

7-5



7 Working with quantizer Objects

Transformations for Quantized Data
You can convert data values from numeric to hexadecimal or binary according
to a quantizer object’s specifications.

Use

• num2bin to convert data to binary

• num2hex to convert data to hexadecimal

• hex2num to convert hexadecimal data to numeric

• bin2num to convert binary data to numeric

For example,

q = quantizer([3 2]);
x = [0.75 -0.25

0.50 -0.50
0.25 -0.75
0 -1 ];

b = num2bin(q,x)

b =
011
010
001
000
111
110
101
100

produces all two’s complement fractional representations of 3-bit fixed-point
numbers.
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quantizer Object Functions
You can learn about the functions associated with quantizer objects in the
Function Reference.
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8 Working with the Fixed-Point Embedded MATLAB™ Subset

Supported Functions and Limitations of Fixed-Point
Embedded MATLAB™ Subset

The Embedded MATLAB™ subset is a restricted subset of the MATLAB®

language that provides optimizations for:

• Generating efficient, production-quality C code for embedded applications.
Embedded MATLAB subset restricts MATLAB semantics to meet the
memory and data type requirements of embedded target environments.

• Accelerating fixed-point algorithms.

For more information about the Embedded MATLAB subset, refer to the
“Embedded MATLAB” documentation. The Embedded MATLAB subset
supports a significant number of Fixed-Point Toolbox™ functions, which are
listed in the table below. The following general limitations always apply to the
use of Fixed-Point Toolbox software with the Embedded MATLAB subset:

• fipref and quantizer objects are not supported.

• Dot notation is only supported for getting the values of fimath and
numerictype properties. Dot notation is not supported for fi objects, and it
is not supported for setting properties.

• Word lengths larger than 32 bits are not supported.

• It is illegal to change the fimath or numerictype of a given variable once
it has been created.

• The boolean and ScaledDouble values of the DataTypeMode and DataType
properties are not supported.

• convergent rounding is not supported.

• The false value of the CastBeforeSum property is not supported.

• The numel function works the same as MATLAB numel for fi objects in
Embedded MATLAB subset, rather than returning 1 as in Fixed-Point
Toolbox software.

To learn about the general limitations of the Embedded MATLAB subset that
also apply to use with Fixed-Point Toolbox software, refer to “What Is the
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Embedded MATLAB Subset?” in the Embedded MATLAB language subset
documentation.

Fixed-Point Toolbox™ Functions Supported for Use with the Embedded MATLAB™
Language Subset

Function Remarks/Limitations

abs —

all —

any —

bitand • Not supported for slope-bias scaled fi objects.

bitandreduce —

bitcmp —

bitconcat —

bitget —

bitor • Not supported for slope-bias scaled fi objects.

bitorreduce —

bitreplicate —

bitrol —

bitror —

bitset —

bitshift —

bitsliceget —

bitsll —

bitsra —

bitsrl —

bitxor • Not supported for slope-bias scaled fi objects.

bitxorreduce —

ceil —

complex —
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Fixed-Point Toolbox™ Functions Supported for Use with the Embedded MATLAB™
Language Subset (Continued)

Function Remarks/Limitations

conj —

convergent —

ctranspose —

diag —

disp —

divide • Any non-fi input must be constant; that is, its value must be known
at compile time so that it can be cast to a fi object.

• Complex and imaginary divisors are not supported.

double —

end —

eps • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single and fi double
signals.

eq • Not supported for fixed-point signals with different biases.
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Fixed-Point Toolbox™ Functions Supported for Use with the Embedded MATLAB™
Language Subset (Continued)

Function Remarks/Limitations

fi • Use to create a fixed-point constant or variable in the Embedded
MATLAB language subset.

• The default constructor syntax without any input arguments is not
supported.

• The syntax fi('PropertyName',PropertyValue...) is
not supported. To use property name/property value pairs,
you must first specify the value v of the fi object as in
fi(v,'PropertyName',PropertyValue...).

• Works for all input values when complete numerictype information
of the fi object is provided.

• Works only for constant input values (value of input must be known
at compile time) when complete numerictype information of the fi
object is not specified.

• numerictype object information must be available for nonfixed-point
Simulink® inputs.

fimath • Fixed-point signals coming in to an Embedded MATLAB Function
block from Simulink are assigned the fimath object defined in the
Embedded MATLAB Function block dialog in the Model Explorer.

• Use to create fimath objects in Embedded MATLAB code.

fix —

floor —

ge • Not supported for fixed-point signals with different biases.

get • The syntax structure = get(o) is not supported.

getlsb —

getmsb —

gt • Not supported for fixed-point signals with different biases.

horzcat —

imag —
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Fixed-Point Toolbox™ Functions Supported for Use with the Embedded MATLAB™
Language Subset (Continued)

Function Remarks/Limitations

int8, int16, int32 —

iscolumn —

isempty —

isfi —

isfimath —

isfinite —

isinf —

isnan —

isnumeric —

isnumerictype —

isreal —

isrow —

isscalar —

issigned —

isvector —

le • Not supported for fixed-point signals with different biases.

length —

logical —

lowerbound —

lsb • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single and double signals.

lt • Not supported for fixed-point signals with different biases.

max —

min —
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Fixed-Point Toolbox™ Functions Supported for Use with the Embedded MATLAB™
Language Subset (Continued)

Function Remarks/Limitations

minus • Any non-fi input must be constant; that is, its value must be known
at compile time so that it can be cast to a fi object.

mtimes • Any non-fi input must be constant; that is, its value must be known
at compile time so that it can be cast to a fi object.

ndims —

ne • Not supported for fixed-point signals with different biases.

nearest —

numberofelements • numberofelements and numel both work the same as MATLAB
numel for fi objects in the Embedded MATLAB language subset.

numerictype • Fixed-point signals coming in to an Embedded MATLAB Function
block from Simulink are assigned a numerictype object that is
populated with the signal’s data type and scaling information.

• Returns the data type when the input is a nonfixed-point signal.

• Use to create numerictype objects in Embedded MATLAB code.

permute —

plus • Any non-fi input must be constant; that is, its value must be known
at compile time so that it can be cast to a fi object.

pow2 —

range —

real —

realmax —

realmin —

repmat —

rescale —

reshape —

round —
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Fixed-Point Toolbox™ Functions Supported for Use with the Embedded MATLAB™
Language Subset (Continued)

Function Remarks/Limitations

sign —

single —

size —

sqrt • Complex and [Slope Bias] inputs error out.

• Negative inputs yield a 0 result.

subsasgn —

subsref —

sum —

times • Any non-fi input must be constant; that is, its value must be known
at compile time so that it can be cast to a fi object.

transpose —

tril —

triu —

uint8, uint16, uint32 —

uminus —

uplus —

upperbound —

vertcat —
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Fixed-Point Embedded MATLAB™ Subset Features

In this section...

“Embedded MATLAB™ MEX” on page 8-9

“Embedded MATLAB™ Function Block” on page 8-12

Embedded MATLAB™ MEX
Embedded MATLAB™ MEX converts M-code to C-MEX functions that contain
Embedded MATLAB subset optimizations for automatically accelerating
fixed-point algorithms to compiled C code speed in MATLAB®. For more
information, refer to “Working with Embedded MATLAB MEX” in the
Embedded MATLAB language subset documentation.

Speeding Up Fixed-Point Execution with the emlmex Function
The Embedded MATLAB emlmex function can greatly increase the execution
speed of your algorithms; however, improper use of the function can also
slow execution. In this example, you will use the emlmex function to compile
different parts of a simple algorithm. By comparing the run times of the two
cases, you will see the benefits and best use of the emlmex function.

Algorithm. The algorithm used throughout this example replicates the
functionality of the MATLAB sum function, which sums the columns of a
matrix. To see the algorithm, type open fi_matrix_column_sum.m at the
MATLAB command line.

function B = fi_matrix_column_sum(A)
% Sum the columns of matrix A.
%#eml

[m,n] = size(A);
w = get(A,'WordLength') + ceil(log2(m));
f = get(A,'FractionLength');
B = fi(zeros(1,n),true,w,f,fimath(A));
for j = 1:n

for i = 1:m
B(j) = B(j) + A(i,j);

end
end
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Trial 1: Best Performance. The best way to speed up the execution of the
algorithm is to compile the entire algorithm using the emlmex function. To
evaluate the performance of the emlmex function when the entire algorithm
is compiled, run the following code. The first portion of m-code executes the
algorithm using only MATLAB functions. The second portion of the code
compiles the entire algorithm using the Embedded MATLAB emlmex function.
The MATLAB tic and toc functions keep track of the run times for each
method of execution.

% MATLAB
fipref('NumericTypeDisplay','short','FimathDisplay','none');
A = fi(randn(1000,10));
tic
B = fi_matrix_column_sum(A)
t_matrix_column_sum_m = toc

% Embedded MATLAB
emlmex fi_matrix_column_sum -o fi_matrix_column_sum_x -eg {A} ...
-I [matlabroot '/toolbox/fixedpoint/fidemos']
tic
B = fi_matrix_column_sum_x(A);
t_matrix_column_sum_eml = toc

Trial 2: Worst Performance. Compiling only the smallest unit of
computation using the emlmex function leads to much slower execution. In
some cases, the overhead that results from calling the emlmex function inside
a nested loop can cause even slower execution than using MATLAB functions
alone. To evaluate the performance of the emlmex function when only the
smallest unit of computation is compiled, run the following code. The first
portion of m-code executes the algorithm using only MATLAB functions. The
second portion of the code compiles the smallest unit of computation with the
emlmex function, leaving the rest of the computations to MATLAB.

% MATLAB
tic
[m,n] = size(A);
w = get(A,'WordLength') + ceil(log2(m));
f = get(A,'FractionLength');
B = fi(zeros(1,n),true,w,f,fimath(A));
for j = 1:n

for i = 1:m
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B(j) = fi_scalar_sum(B(j),A(i,j));
% B(j) = B(j) + A(i,j);

end
end
t_scalar_sum_m = toc

% Embedded MATLAB
emlmex fi_scalar_sum -o fi_scalar_sum_x -eg {B(1),A(1,1)} ...
-I [matlabroot '/toolbox/fixedpoint/fidemos']
tic
[m,n] = size(A);
w = get(A,'WordLength') + ceil(log2(m));
f = get(A,'FractionLength');
B = fi(zeros(1,n),true,w,f,fimath(A));
for j = 1:n

for i = 1:m
B(j) = fi_scalar_sum_x(B(j),A(i,j));
% B(j) = B(j) + A(i,j);

end
end
t_scalar_sum_eml = toc

Ratio of Times. A comparison of Trial 1 and Trial 2 appears in the following
table. Your computer may record different times than the ones the table
shows, but the ratios should be approximately the same. There is an extreme
difference in ratios between the trial where the entire algorithm was compiled
using emlmex (t_matrix_column_sum_eml) and where only the scalar sum was
compiled (t_scalar_sum_eml). Even the M-file with no emlmex compilation
(t_matrix_column_sum_m) did better than when only the smallest unit of
computation was compiled using emlmex (t_scalar_sum_eml).

X (Overall Performance
Rank)

Time X/Best X_m/X_eml

Trial 1: Best Performance

t_matrix_column_sum_m (2) 1.99759 84.4917

t_matrix_column_sum_eml (1) 0.0236424 1

84.4917
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X (Overall Performance
Rank)

Time X/Best X_m/X_eml

Trial 2: Worst Performance

t_scalar_sum_m (4) 10.2067 431.71

t_scalar_sum_eml (3) 4.90664 207.536

2.08017

Using Data Type Override with Embedded MATLAB™ MEX
Fixed-Point Toolbox™ software ships with a demonstration of how to generate
a C-MEX function from M-code. The M-code takes the weighted average of
a signal to create a lowpass filter. To run the demo, click the Fixed-Point
Lowpass Filtering Using Embedded MATLAB MEX link and follow the
instructions in the right pane of the Help browser.

You can specify data type override in this demo by typing an extra command
at the MATLAB prompt in the “Define Fixed-Point Parameters” section of
the demo. To turn data type override on, type the following command at the
MATLAB prompt after running the reset(fipref) demo command in that
section:

fipref('DataTypeOverride','TrueDoubles')

This command tells Fixed-Point Toolbox software to create all fi objects with
type fi double. When you compile the M-file using the emlmex command in
the “Compile the M-File into a MEX File” section of the demo, the resulting
MEX-function uses floating-point data.

Embedded MATLAB™ Function Block
The Embedded MATLAB Function block lets you compose a MATLAB
language function in a Simulink® model that generates embeddable code
using the Embedded MATLAB subset. When you simulate the model or
generate code for a target environment, a function in an Embedded MATLAB
Function block generates efficient C code. This code meets the strict memory
and data type requirements of embedded target environments. In this way,
Embedded MATLAB Function blocks bring the power of MATLAB for the
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embedded environment into Simulink. For more information, refer to “Using
the Simulink® Embedded MATLAB™ Function Block” on page 9-8.
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Using fi Objects with Simulink®

In this section...

“Reading Fixed-Point Data from the Workspace” on page 9-2

“Writing Fixed-Point Data to the Workspace” on page 9-2

“Setting the Value and Data Type of Block Parameters” on page 9-6

“Logging Fixed-Point Signals” on page 9-6

“Accessing Fixed-Point Block Data During Simulation” on page 9-6

Reading Fixed-Point Data from the Workspace
You can read fixed-point data from the MATLAB® workspace into a Simulink®

model via the From Workspace block. To do so, the data must be in a structure
format with a fi object in the values field. In array format, the From
Workspace block only accepts real, double-precision data.

To read in fi data, the Interpolate data parameter of the From Workspace
block must not be selected, and the Form output after final data value by
parameter must be set to anything other than Extrapolation.

Writing Fixed-Point Data to the Workspace
You can write fixed-point output from a model to the MATLAB workspace via
the To Workspace block in either array or structure format. Fixed-point data
written by a To Workspace block to the workspace in structure format can be
read back into a Simulink model in structure format by a From Workspace
block.

Note To write fixed-point data to the MATLAB workspace as a fi object,
select the Log fixed-point data as a fi object check box on the To
Workspace block dialog. Otherwise, fixed-point data is converted to double
and written to the workspace as double.
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For example, you can use the following code to create a structure in the
MATLAB workspace with a fi object in the values field. You can then use
the From Workspace block to bring the data into a Simulink model.

a = fi([sin(0:10)' sin(10:-1:0)'])

a =

0 -0.5440
0.8415 0.4121
0.9093 0.9893
0.1411 0.6570

-0.7568 -0.2794
-0.9589 -0.9589
-0.2794 -0.7568
0.6570 0.1411
0.9893 0.9093
0.4121 0.8415

-0.5440 0

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 15

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

s.signals.values = a

s =

signals: [1x1 struct]
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s.signals.dimensions = 2

s =

signals: [1x1 struct]

s.time = [0:10]'

s =

signals: [1x1 struct]
time: [11x1 double]

The From Workspace block in the following model has the fi structure s in
the Data parameter.

Remember, to write fixed-point data to the MATLAB workspace as a fi
object, select the Log fixed-point data as a fi object check box on the To
Workspace block dialog. Otherwise, fixed-point data is converted to double
and written to the workspace as double.

In the model, the following parameters in the Solver pane of the
Configuration Parameters dialog have the indicated settings:

• Start time — 0.0

• Stop time — 10.0

• Type — Fixed-step

• Solver — discrete (no continuous states)

• Fixed step size (fundamental sample time) — 1.0
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The To Workspace block writes the result of the simulation to the MATLAB
workspace as a fi structure.

simout.signals.values

ans =

0 -8.7041
13.4634 6.5938
14.5488 15.8296
2.2578 10.5117

-12.1089 -4.4707
-15.3428 -15.3428
-4.4707 -12.1089
10.5117 2.2578
15.8296 14.5488
6.5938 13.4634

-8.7041 0
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DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 32
FractionLength: 25

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

Setting the Value and Data Type of Block Parameters
You can use Fixed-Point Toolbox™ expressions to specify the value and data
type of block parameters in Simulink. Refer to “Block Support for Data and
Numeric Signal Types” in the Simulink documentation for more information.

Logging Fixed-Point Signals
When fixed-point signals are logged to the MATLAB workspace via signal
logging, they are always logged as fi objects. To enable signal logging for a
signal, select the Log signal data option in the signal’s Signal Properties
dialog box. For more information, refer to “Logging Signals” in the Simulink
documentation.

When you log signals from a referenced model or Stateflow® chart in your
model, the word lengths of fi objects may be larger than you expect. The word
lengths of fixed-point signals in referenced models and Stateflow charts are
logged as the next largest data storage container size.

Accessing Fixed-Point Block Data During Simulation
Simulink provides an application program interface (API) that enables
programmatic access to block data, such as block inputs and outputs,
parameters, states, and work vectors, while a simulation is running. You can
use this interface to develop MATLAB programs capable of accessing block
data while a simulation is running or to access the data from the MATLAB
command line. Fixed-point signal information is returned to you via this API
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as fi objects. For more information on the API, refer to “Accessing Block Data
During Simulation” in the Simulink documentation.
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Using the Simulink® Embedded MATLAB™ Function Block

In this section...

“Using Fixed-Point Data Types with the Embedded MATLAB™ Function
Block” on page 9-8

“Using the Embedded MATLAB™ Function Block with Data Type Override”
on page 9-9

“Using the Model Explorer with a Fixed-Point Embedded MATLAB™
Function Block” on page 9-10

“Example: Implementing a Fixed-Point Direct Form FIR Using the
Embedded MATLAB™ Function Block” on page 9-14

Using Fixed-Point Data Types with the Embedded
MATLAB™ Function Block
The Embedded MATLAB Function block lets you compose a MATLAB®

language function in a Simulink® model that generates embeddable code
using the Embedded MATLAB™ subset. When you simulate the model or
generate code for a target environment, a function in an Embedded MATLAB
Function block generates efficient C code. This code meets the strict memory
and data type requirements of embedded target environments. In this way,
Embedded MATLAB Function blocks bring the power of MATLAB for the
embedded environment into Simulink.

For more information about the Embedded MATLAB Function block and the
Embedded MATLAB subset, refer to the following documentation:

• Embedded MATLAB Function block reference page in the Simulink
documentation

• “Using the Embedded MATLAB Function Block” in the Simulink
documentation

• “Working with the Embedded MATLAB Subset” in the Embedded MATLAB
documentation

A significant number of Fixed-Point Toolbox™ functions are supported by the
Embedded MATLAB subset. Refer to “Supported Functions and Limitations
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of Fixed-Point Embedded MATLAB™ Subset” on page 8-2 for information
about which Fixed-Point Toolbox features are supported by the Embedded
MATLAB subset.

Note To simulate models using fixed-point data types in Simulink, you must
have a Simulink® Fixed Point™ license.

Using the Embedded MATLAB™ Function Block with
Data Type Override
When you use the Embedded MATLAB Function block in a Simulink model
that specifies data type override, the block determines the data type override
equivalents of the input signal and parameter types and uses these to run
the simulation. The following table shows how the Embedded MATLAB
Function block determines the data type override equivalent from the data
type of the input signal or parameter and the data type override setting in
the Simulink model.

Note The Embedded MATLAB Function block does not support the Scaled
doubles data type override setting.

Input Signal or
Parameter Type

Data Type Override
Setting

Data Type Override
Equivalent

True doubles fi doubleInherited single

True singles fi single

True doubles Built-in doubleSpecified single

True singles Built-in single

True doubles fi doubleInherited double

True singles fi single

True doubles Built-in doubleSpecified double

True singles Built-in single

9-9



9 Interoperability with Other Products

Input Signal or
Parameter Type

Data Type Override
Setting

Data Type Override
Equivalent

True doubles fi doubleInherited Fixed

True singles fi single

True doubles fi doubleSpecified Fixed

True singles fi single

Using the Model Explorer with a Fixed-Point
Embedded MATLAB™ Function Block
You can specify parameters for an Embedded MATLAB Function block in a
fixed-point model using the Model Explorer. Try the following:

1 Place an Embedded MATLAB Function block in a new model. The block is
located in the Simulink User-Defined Functions library.

2 Open the Model Explorer by selecting View > Model Explorer from
your model.

3 Expand the untitled* node in the Model Hierarchy pane of the Model
Explorer and select the Embedded MATLAB Function node. The Model
Explorer now appears as follows:
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The parameters in the Simulink input signal properties group box in the
Dialog pane apply to Embedded MATLAB Function blocks in models that
use fixed-point data types.

FIMATH for fixed-point input signals
Define the fimath object to be associated with Simulink fixed-point or
integer signals entering the Embedded MATLAB Function block as
inputs. You can do this in either of two ways:

• Fully define the fimath object in the parameter value box using
Fixed-Point Toolbox MATLAB code.
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• Enter a variable name of a fimath object that is defined in the
MATLAB or model workspace.

The default fimath object entered for this parameter emulates C-style
math.

Treat inherited integer signals as
Choose whether to treat inherited integer signals as integers or
fixed-point data.

• When you select Integer, Simulink integer inputs to the Embedded
MATLAB Function block are treated as MATLAB integers.

• When you select Fixed-point, Simulink integer inputs to the
Embedded MATLAB Function block are treated as Fixed-Point
Toolbox fi objects.

Sharing Models Containing Fixed-Point Embedded MATLAB™
Function Blocks
Sometimes you might need to share a fixed-point model using the Embedded
MATLAB Function block with a coworker. When you do, make sure to move
any variables you define in the MATLAB workspace, including fimath objects,
to the model workspace. For example, try the following:

1 Place an Embedded MATLAB Function block in a new model. The block is
located in the Simulink User-Defined Functions library.

2 Define a fimath object in the MATLAB workspace that you want to use for
any Simulink fixed-point signal entering the Embedded MATLAB Function
block as an input:

F = fimath('RoundMode','Floor','OverflowMode','Wrap',...
'ProductMode','KeepLSB','ProductWordLength',32,...
'SumMode','KeepLSB','SumWordLength',32)

F =

RoundMode: floor
OverflowMode: wrap
ProductMode: KeepLSB
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ProductWordLength: 32
SumMode: KeepLSB

SumWordLength: 32
CastBeforeSum: true

3 Open the Model Explorer by selecting View > Model Explorer from
your model.

4 Expand the untitled* node in the Model Hierarchy pane of the Model
Explorer and select the Embedded MATLAB Function node.

5 Enter the variable F into the FIMATH for fixed-point input signals
parameter on the Dialog pane and click Apply. You have now defined the
fimath object for any Simulink fixed-point signal entering the Embedded
MATLAB Function block as an input.

6 Select the Base Workspace node in the Model Hierarchy pane. You
can see the variable F that you have defined in the MATLAB workspace
listed in the Contents pane. If you were to send this model to a coworker,
that coworker would have to define that same variable in the MATLAB
workspace to get the same results as you with this model.

7 Cut the variable F from the base workspace and paste it into the model
workspace listed under the node for your model, in this case untitled*.
The Model Explorer now looks like this:
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You can now e-mail your model to a coworker, and because the variables
needed to run the model are included in the workspace of the model itself,
your coworker can run the model and get the correct results without
performing any extra steps.

Example: Implementing a Fixed-Point Direct Form
FIR Using the Embedded MATLAB™ Function Block
The following sections lead you through creating a fixed-point, low-pass,
direct form FIR filter in Simulink using Fixed-Point Toolbox software and the
Embedded MATLAB Function block. You will perform the following tasks in
the sequence shown:
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• “Program the Embedded MATLAB™ Function Block” on page 9-15

• “Prepare the Inputs” on page 9-17

• “Create the Model” on page 9-17

• “Define the Input fimath Using the Model Explorer” on page 9-20

• “Run the Simulation” on page 9-22

Program the Embedded MATLAB™ Function Block

1 Place an Embedded MATLAB Function block in a new model. The block is
located in the Simulink User-Defined Functions library.

2 Save your model as eML_fi.mdl.

3 Double-click the Embedded MATLAB Function block in your model to open
the Embedded MATLAB Editor. Type or copy and paste the following
MATLAB code, including comments, into the Editor:

function [yout,zf] = dffirdemo(b, x, zi)
%eML_fi doc model example
%Initialize the output signal yout and the final conditions zf
Fy = fimath('RoundMode','Floor','OverflowMode','Wrap',...

'ProductMode','KeepLSB','ProductWordLength',32,...
'SumMode','KeepLSB','SumWordLength',32);

Ty = numerictype(1,12,8);
yout = fi(zeros(size(x)),'numerictype',Ty,'fimath',Fy);
zf = zi;

% FIR filter code
for k=1:length(x);

% Update the states: z = [x(k);z(1:end-1)]
zf(:) = [x(k);zf(1:end-1)];
% Form the output: y(k) = b*z
yout(k) = b*zf;

end

% Plot the outputs only in simulation.
% This does not generate C code.
eml.extrinsic('figure');
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eml.extrinsic('subplot');
eml.extrinsic('plot');
eml.extrinsic('title');
eml.extrinsic('grid');
figure;
subplot(211);plot(x); title('Noisy Signal');grid;
subplot(212);plot(yout); title('Filtered Signal');grid;

The Editor should now appear as follows:
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Prepare the Inputs
Define the filter coefficients b, noise x, and initial conditions zi by typing the
following at the MATLAB command line:

b = fi_fir_coefficients;
load mtlb
x = mtlb;
n = length(x);
noise = sin(2*pi*2140*(0:n-1)'./Fs);
x = x + noise;
zi = zeros(length(b),1);

Create the Model

1 Add blocks to your model to create the system shown below.
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2 Set the block parameters in the model to the following values:

Block Parameter Value

Constant value b

Interpret vector
parameters as 1-D

Unselected

Sampling mode Sample based

Sample time inf

Output data type
mode

Specify via dialog

Output data type sfix(12)

Output scaling
mode

Use specified
scaling

Constant

Output scaling
value

2^-12

Constant value x+noise

Interpret vector
parameters as 1-D

Unselected

Sampling mode Sample based

Sample time 1

Output data type
mode

Specify via dialog

Output data type sfix(12)

Output scaling
mode

Use specified
scaling

Constant1

Output scaling
value

2^-8
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Block Parameter Value

Constant value zi

Interpret vector
parameters as 1-D

Unselected

Sampling mode Sample based

Sample time inf

Output data type
mode

Specify via dialog

Output data type sfix(12)

Output scaling
mode

Use specified
scaling

Constant2

Output scaling
value

2^-8

Variable name yout

Limit data points to
last

inf

Decimation 1

Sample time -1

Save format Array

To Workspace

Log fixed-point data
as a fi object

Selected
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Block Parameter Value

Variable name zf

Limit data points to
last

inf

Decimation 1

Sample time 1

Save format Array

To Workspace1

Log fixed-point data
as a fi object

Selected

Variable name noisyx

Limit data points to
last

inf

Decimation 1

Sample time 1

Save format Array

To Workspace2

Log fixed-point data
as a fi object

Selected

Define the Input fimath Using the Model Explorer

1 Define the fimath object to be used for the Embedded MATLAB Function
block inputs in the MATLAB workspace. Note that it must have the same
properties as the fimath object defined in your Embedded MATLAB code in
order to perform arithmetic between the quantities:

F_in = fimath('RoundMode','Floor','OverflowMode','Wrap',...
'ProductMode','KeepLSB','ProductWordLength',32,...
'SumMode','KeepLSB','SumWordLength',32)

F_in =

RoundMode: floor
OverflowMode: wrap
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ProductMode: KeepLSB
ProductWordLength: 32

SumMode: KeepLSB
SumWordLength: 32
CastBeforeSum: true

2 Open the Model Explorer for the model by selecting View > Model
Explorer.

3 Click the Base Workspace node in the Model Hierarchy pane of the
Model Explorer. You see the fimath F_in you just defined listed in the
Contents pane.

4 Click the eML_fi > Embedded MATLAB Function node in the Model
Hierarchy pane. The dialog for the Embedded MATLAB Function block
appears in the Dialog pane of the Model Explorer.

5 Enter F_in in the FIMATH for fixed-point input signals parameter on
the Embedded MATLAB Function block dialog in the Dialog pane of the
Model Explorer and click Apply. This step sets the fimath object for the
three inputs entering into the Embedded MATLAB Function block in your
model. The Model Explorer now appears as follows:
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Run the Simulation

1 Run the simulation by selecting your model and typing Ctrl+T. While the
simulation is running, information outputs to the MATLAB command line.
You can look at the plots of the noisy signal and the filtered signal.

2 Now build embeddable C code for your model by selecting the model and
typing Ctrl+B. While the code is building, information outputs to the
MATLAB command line. A directory called eML_fi_grt_rtw is created
in your current working directory.
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3 Navigate to eML_fi_grt_rtw > eML_fi.c. In this file you can see the code
that has been generated from your model. Search on the comment in your
code

%eML_fi doc model example

This brings you to the beginning of the section of the code that is generated
from your Embedded MATLAB Function block.
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Using Embedded MATLAB™ Coder
Embedded MATLAB™ Coder is a Real-Time Workshop® function (emlc)
that automatically converts M-code directly to C code. It lets you accelerate
MATLAB® code that uses Fixed-Point Toolbox™ software. For more
information, refer to “Working with Embedded MATLAB Coder” in the
Real-Time Workshop product documentation.
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Using fi Objects with Signal Processing Blockset™
Software

In this section...

“Reading Fixed-Point Signals from the Workspace” on page 9-25

“Writing Fixed-Point Signals to the Workspace” on page 9-25

Reading Fixed-Point Signals from the Workspace
You can read fixed-point data from the MATLAB® workspace into a Simulink®

model using the Signal From Workspace and Triggered Signal From
Workspace blocks from Signal Processing Blockset™ software. Enter the
name of the defined fi variable in the Signal parameter of the Signal From
Workspace or Triggered Signal From Workspace block.

Writing Fixed-Point Signals to the Workspace
Fixed-point output from a model can be written to the MATLAB workspace
via the Signal To Workspace or Triggered To Workspace block from the
blockset. The fixed-point data is always written as a 2-D or 3-D array.

Note To write fixed-point data to the MATLAB workspace as a fi object,
select the Log fixed-point data as a fi object check box on the Signal To
Workspace or Triggered To Workspace block dialog. Otherwise, fixed-point
data is converted to double and written to the workspace as double.
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For example, you can use the following code to create a fi object in the
MATLAB workspace. You can then use the Signal From Workspace block to
bring the data into a Simulink model.

a = fi([sin(0:10)' sin(10:-1:0)'])

a =

0 -0.5440
0.8415 0.4121
0.9093 0.9893
0.1411 0.6570

-0.7568 -0.2794
-0.9589 -0.9589
-0.2794 -0.7568
0.6570 0.1411
0.9893 0.9093
0.4121 0.8415

-0.5440 0

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 15

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

The Signal From Workspace block in the following model has these settings:

• Signal — a

• Sample time — 1

• Samples per frame — 2
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• Form output after final data value by — Setting to zero

The following parameters in the Solver pane of the Configuration
Parameters dialog have these settings:

• Start time — 0.0

• Stop time — 10.0

• Type — Fixed-step

• Solver — discrete (no continuous states)

• Fixed step size (fundamental sample time) — 1.0

Remember, to write fixed-point data to the MATLAB workspace as a fi object,
select the Log fixed-point data as a fi object check box on the Signal To
Workspace block dialog. Otherwise, fixed-point data is converted to double
and written to the workspace as double.

The Signal To Workspace block writes the result of the simulation to the
MATLAB workspace as a fi object.
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yout =

(:,:,1) =

0.8415 -0.1319
-0.8415 -0.9561

(:,:,2) =

1.0504 1.6463
0.7682 0.3324

(:,:,3) =

-1.7157 -1.2383
0.2021 0.6795

(:,:,4) =

0.3776 -0.6157
-0.9364 -0.8979

(:,:,5) =

1.4015 1.7508
0.5772 0.0678

(:,:,6) =

-0.5440 0
-0.5440 0
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DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 17
FractionLength: 15

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true
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Using fi Objects with Filter Design Toolbox™ Software
When the Arithmetic property is set to 'fixed', you can use an existing fi
object as the input, states, or coefficients of a dfilt object in Filter Design
Toolbox™ software. Also, fixed-point filters in the toolbox return fi objects
as outputs. Refer to the Filter Design Toolbox software documentation for
more information.
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